Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Nhất Khánh
Xem chi tiết
Ngô Nhất Khánh
Xem chi tiết
Phạm Nguyễn Tất Đạt
25 tháng 4 2016 lúc 20:01

gọi A=1/1*2*3+1/2*3*4+...+1/49*50*51

      2A=2(1/1*2*3+1/2*3*4+...+1/49*50*51)

       2A=2/1*2*3+2/2*3*4+...+2/49*50*51

       2A=1/1*2-1/2*3+1/2*3-1/3*4+...+1/49*50-1/50*51

      2A=1/2-1/2550

      2A=637/1275

      A=637/1275:2

      A=637/2550

qua bài trên ta có công thức \(\frac{1}{n\cdot\left(n+1\right)\cdot\left(n+2\right)}\)\(\frac{1}{n\cdot\left(n+1\right)}\)-\(\frac{1}{\left(n+1\right)\cdot\left(n+2\right)}\)

Phạm Nguyễn Tất Đạt
25 tháng 4 2016 lúc 20:06

lộn công thức là 2/n*(n+1)*(n+2)=1/n*(n+1)-1/(n+1)*(n+2) cho tui xin lỗi

mà tick nhébanh

Ngô Nhất Khánh
25 tháng 4 2016 lúc 20:10

cảm ơn bạn rất nhiều

Nguyễn Ngọc Thảo Phương
Xem chi tiết
 .
6 tháng 9 2019 lúc 17:53

\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{49.50.51}\)

\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.5}+...+\frac{1}{49.50}-\frac{1}{50.51}\)

\(=\frac{1}{2}-\frac{1}{50.51}\)

\(=\frac{1}{2}-\frac{1}{2550}=\frac{637}{1275}\)

Dang Trung
6 tháng 9 2019 lúc 18:09

Gọi A là tổng dãy phân số trên

Ta có :

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{49.50.51}\)

\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{49.50.51}\)

Ta thấy:

\(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3};\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4};...;\frac{2}{49.50.51}=\frac{2}{49.50}-\frac{2}{50.51}\text{​​}\)

\(\Rightarrow2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{49.50}-\frac{1}{50.51}\)

\(\Rightarrow2A=\frac{1}{1.2}-\frac{1}{50.51}\)

\(\Rightarrow2A=\frac{1}{2}-\frac{1}{2550}\)

\(\Rightarrow2A=\frac{1275}{2550}-\frac{1}{2550}\)

\(\Rightarrow2A=\frac{637}{1275}\Rightarrow A=\frac{637}{1275}:2=\frac{637}{2550}\)

Vậy tổng dãy phân số trên là :\(\frac{637}{2550}\)

Chúc bạn học tốt !!! :D

Nguyen Thi Thanh Thao
Xem chi tiết
Lightning Farron
16 tháng 8 2016 lúc 12:55

đề câu a sai ở tử của số hạng thứ 2

Phương Anh (NTMH)
16 tháng 8 2016 lúc 13:00

câu a phải là như z ms làm được bn ơi

A = \frac{3}{1.3}+\frac{1}{3.5}+...+\frac{3}{19.20}

\frac{3}{1.2.3}+\frac{3}{2.3.4}+...+\frac{3}{49.50.51}

 

Phương Anh (NTMH)
16 tháng 8 2016 lúc 13:09

câu a thấy kì kì sao đó nha

3/19.20 ===> sai oy

phải là 3/19.21

 

Nguyen Thi Thanh Thao
Xem chi tiết
Lightning Farron
16 tháng 8 2016 lúc 13:52

\(B=\frac{3}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{49.50.51}\right)\)

\(=\frac{3}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{49.50}-\frac{1}{50.51}\right)\)

\(=\frac{3}{2}\left(\frac{1}{2}-\frac{1}{2550}\right)\)

\(=\frac{3}{2}\cdot\frac{637}{1275}\)

\(=\frac{637}{850}\)

Trần Linh Trang
16 tháng 8 2016 lúc 13:30

mk trả lời câu này rồi đó

Lightning Farron
16 tháng 8 2016 lúc 13:34

nhân B với 3/2 r` rút gọn

Nguyễn Hữu Huy
Xem chi tiết
Miki Thảo
Xem chi tiết
Minfire
Xem chi tiết
Minh Triều
18 tháng 6 2015 lúc 19:27

\(Z=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{48.49.50}\)

\(=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{48.49.50}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{48.49}-\frac{1}{49.50}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{49.50}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2450}\right)=\frac{1}{2}\left(\frac{2450}{2450}-\frac{1}{2450}\right)\)

\(=\frac{1}{2}.\frac{2449}{2450}=\frac{2449}{4900}\)

Mạnh Lê
31 tháng 3 2017 lúc 11:58

Z = 1/1.2.3 + 1/2.3.4 + 1/3.4.5 + ... + 1/98.99.100 
Áp dụng phương pháp khử liên tiếp: viết mỗi số hạng thành hiệu của hai số sao cho số trừ ở nhóm trước bằng số bị trừ ở nhóm sau. 
Ta xét: 
1/1.2 - 1/2.3 = 2/1.2.3; 1/2.3 - 1/3.4 = 2/2.3.4;...; 1/98.99 - 1/99.100 = 2/98.99.100 
tổng quát: 1/n(n+1) - 1/(n+1)(n+2) = 2/n(n+1)(n+2). Do đó: 
2Z = 2/1.2.3 + 2/2.3.4 + 2/3.4.5 +...+ 2/98.99.100 
= (1/1.2 - 1/2.3) + (1/2.3 - 1/3.4) +...+ (1/98.99 - 1/99.100) 
= 1/1.2 - 1/2.3 + 1/2.3 - 1/3.4 + ... + 1/98.99 - 1/99.100 
= 1/1.2 - 1/99.100 
= 1/2 - 1/9900 
= 4950/9900 - 1/9900 
= 4949/9900. 
Vậy Z = \(\frac{4949}{9900}\)

kaneki_ken
Xem chi tiết
Neymar Jr
11 tháng 2 2018 lúc 13:29

\(S=\left(\frac{3-1}{1.2.3}\right)+\left(\frac{4-2}{2.3.4}\right)+...+\left(\frac{2018-2016}{2016.2017.2018}\right)\)

\(S=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+..+\frac{1}{2016.2017}-\frac{1}{2017.2018}\right)\)

\(S=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2017.2018}\right)\)

Còn lại tự tính nha bn