Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anh cfm VN
Xem chi tiết
thị xuân hòa việt
Xem chi tiết
Nguyễn Ngọc Bảo Trân
8 tháng 9 2016 lúc 21:11

a) 6B = 2.4.6 + 4.6.(8-2) + 6.8.(10-4) + ... + 18.20.(22-16)

    6B  = 2.4.6 + 4.6.8 - 2.4.6 + 6.8.10 - 4.6.8 +...+ 18.20.22 - 16.18.20

     6B = 18.20.

      B = (18.20.22) : 6

      B = 1320
Mấy bài kia tương tự, cần giải luôn không bạn? Nhưng hơi mất thời gian

Nhi Nguyễn
Xem chi tiết
Lê Nguyên Hạo
1 tháng 9 2016 lúc 22:26

\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)

\(S=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{9}=\frac{1}{8}-\frac{1}{10}\right)\)

\(S=\frac{1}{2}\left(1+\frac{1}{2}-\frac{1}{9}-\frac{1}{10}\right)\)

\(S=\frac{1}{2}.\left(\frac{58}{45}\right)\)

\(S=\frac{29}{45}\)

Lightning Farron
1 tháng 9 2016 lúc 22:30

S =1/1.3-1/2.4+1/3.5-1/4.6+1/5.7 - 1/6.8+1/7.9-1/8.10

\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{7.9}\right)+\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{8.10}\right)\)

\(=\frac{1}{2}\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{7.9}\right)+\frac{1}{2}\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{8.10}\right)\)

\(=\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{7}-\frac{1}{9}\right)+\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+...+\frac{1}{8}-\frac{1}{10}\right)\)

\(=\left(1-\frac{1}{9}\right)+\left(\frac{1}{2}-\frac{1}{10}\right)\)

\(=\frac{8}{9}+\frac{2}{5}\)

\(=\frac{58}{45}\)

 

Lightning Farron
1 tháng 9 2016 lúc 22:34

viết đề hẳn hoi đi đề thì xấu còn bày đặt làm càn

nguyễn ngọc lam thanhh
Xem chi tiết
Lê Hồng Ngọc
8 tháng 3 2020 lúc 11:33

\(A=\) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)

\(A=1-\frac{1}{50}\)

\(A=\frac{49}{50}\)

Khách vãng lai đã xóa
Lê Hồng Ngọc
8 tháng 3 2020 lúc 11:39

\(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.50}\)

A= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)

A = \(\frac{1}{1}-\frac{1}{51}=\frac{50}{51}\)

Khách vãng lai đã xóa
tran khac hap
Xem chi tiết
Minh Anh
1 tháng 9 2016 lúc 22:41

\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)

\(S=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\frac{1}{2.4}-\frac{1}{4.6}-\frac{1}{6.8}-\frac{1}{8.10}\)

\(S=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)

\(S=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)-\frac{1}{2}\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\right)\)

\(S=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+\frac{1}{8}-\frac{1}{10}\right)\)

\(S=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)

\(S=\frac{1}{2}\left(1-\frac{1}{9}-\frac{1}{2}+\frac{1}{10}\right)\)

\(S=\frac{1}{2}.\frac{22}{45}=\frac{11}{45}\)

soyeon_Tiểu bàng giải
1 tháng 9 2016 lúc 22:38

\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)

\(S=\frac{1}{2}.\left[\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}\right)-\left(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+\frac{2}{8.10}\right)\right]\)

\(S=\frac{1}{2}.\left[\left(1-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{9}\right)-\left(\frac{1}{2}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{10}\right)\right]\)

\(S=\frac{1}{2}.\left[\left(1-\frac{1}{9}\right)-\left(\frac{1}{2}-\frac{1}{10}\right)\right]\)

\(S=\frac{1}{2}.\left(\frac{8}{9}-\frac{2}{5}\right)\)

\(S=\frac{1}{2}.\frac{22}{45}=\frac{11}{45}\)

Hồ Thu Giang
1 tháng 9 2016 lúc 22:41

\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)

=> \(S=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)+\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+\frac{1}{8.10}\right)\)

=> \(S=\frac{1}{2}\left(1-\frac{1}{3}+.....+\frac{1}{7}-\frac{1}{9}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+....+\frac{1}{8}-\frac{1}{10}\right)\)

=> \(S=\frac{1}{2}\left(1-\frac{1}{9}\right)+\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)

=> \(S=\frac{1}{2}.\frac{8}{9}+\frac{1}{2}.\frac{2}{5}\)

=> \(S=\frac{4}{9}+\frac{1}{5}\)

=> \(S=\frac{29}{45}\)

Kaitou Kid
Xem chi tiết
Đinh Đức Hùng
18 tháng 7 2017 lúc 18:12

Ta có :

\(1+\frac{1}{n\left(n+2\right)}=\frac{n\left(n+2\right)+1}{n\left(n+2\right)}=\frac{n^2+2n+1}{n\left(n+2\right)}=\frac{\left(n+1\right)^2}{n\left(n+2\right)}\)

Áp dụng ta được :

\(H=\frac{2.2}{1.3}\cdot\frac{3.3}{2.4}\cdot\frac{4.4}{3.5}\cdot\frac{5.5}{4.6}\cdot\frac{6.6}{5.7}\)

\(=\frac{\left(2.3.4.5.6\right)\left(2.3.4.5.6\right)}{\left(2.3.4.5\right)\left(3.4.5.6.7\right)}=\frac{6.2}{7}=\frac{12}{7}\)

nguyễn ngọc khánh vân
Xem chi tiết
ST
7 tháng 10 2016 lúc 19:37

Đặt \(A=\frac{1}{1.3}+\frac{1}{2.4}+...+\frac{1}{8.10}\)

\(2A=\frac{2}{1.3}+\frac{2}{2.4}+...+\frac{2}{8.10}\)

\(2A=1-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}+...+\frac{1}{8}-\frac{1}{10}\)

\(2A=1-\frac{1}{10}\)

\(2A=\frac{9}{10}\)

\(A=\frac{9}{10}:2=\frac{9}{20}\)

bui huynh nhu 898
7 tháng 10 2016 lúc 19:41

=\(\frac{1}{2}\left(\frac{2}{1.3}+...+\frac{2}{8.10}\right)\)

=\(\frac{1}{2}\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{2}-\frac{1}{4}...+\frac{1}{8}-\frac{1}{10}\right)\)

( chắc chắn có số trái dấu ở phía sau, nên còn lại như sau)

=\(\frac{1}{2}\left(1-\frac{1}{10}\right)=\frac{1}{2}.\frac{9}{10}=\frac{9}{20}\)

Niu niu
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 9 2021 lúc 22:35

\(S=\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+\dfrac{1}{5\cdot7}+\dfrac{1}{7\cdot9}-\left(\dfrac{1}{2\cdot4}+\dfrac{1}{4\cdot6}+\dfrac{1}{6\cdot8}+\dfrac{1}{8\cdot10}\right)\)

\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}\right)-\dfrac{1}{2}\left(\dfrac{2}{2\cdot4}+\dfrac{2}{4\cdot6}+\dfrac{2}{6\cdot8}+\dfrac{2}{8\cdot10}\right)\)

\(=\dfrac{1}{2}\left(1-\dfrac{1}{9}\right)-\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{10}\right)\)

\(=\dfrac{1}{2}\cdot\dfrac{8}{9}-\dfrac{1}{2}\cdot\dfrac{2}{5}\)

\(=\dfrac{4}{9}-\dfrac{1}{5}\)

\(=\dfrac{11}{45}\)

lila ma ri
Xem chi tiết
Minh Anh
8 tháng 9 2016 lúc 17:33

a) \(A=2.4+4.6+6.8+...+18.20\)

\(6A=2.4.6+4.6.\left(8-2\right)+6.8.\left(10-4\right)+...+18.20.\left(22-16\right)\)

\(6A=2.4.6+4.6.8-2.4.6+6.8.10-4.6.8+...+18.20.22-16.18.20\)

\(6A=18.20.22\)

\(A=\frac{18.20.22}{6}=\frac{7920}{6}=1320\)

l҉o҉n҉g҉ d҉z҉
8 tháng 9 2016 lúc 17:37

d/ Đặt : A = 1.2 + 2.3 + 3.4 + ......... + 99.100

=> 3A = 1.2.(3 - 0) + 2.3.(4 - 1) + ..... + 99.100.(101 - 98)

=> 3A = 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ..... + 99.100.101

=> 3A = 99.100.101

=> A = 99.100.101 / 3

=> A = 333300