Cho tam giác ABC vuông tại A. Biết AC = 6cm ; BC = 10cm.
a) Tính độ dài cạnh AB.
b) Gọi M là trung điểm của AB. Trên tia đối của tia MC lấy điểm D sao cho DM = CM. Chứng minh Tính độ dài đoạn thẳng DB.
c) Kẻ . Chứng minh AH = BK
HELP GIÚP MÌNH
1. Cho tam giác ABC vuông tại A, biết AH = 16, BH = 9. Tính AB.
2. Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Tính độ dài HB.
3. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12, BC = 15. Tính HC.
4. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 6, HC = 9. Tính độ dài AC.
5. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12cm, BC = 16cm. Tính AH
6. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 8cm, HC = 12 cm. Tính AC.
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
So sánh các góc của tam giác ABC biết a)AB=6cm, BC=6cm, AC=4cm b)Tam giác ABC vuông tại B có AB=6cm, AC=10cm
So sánh các góc của tam giác ABC biết a)AB=6cm, BC=6cm, AC=4cm b)Tam giác ABC vuông tại B có AB=6cm, AC=10cm
a) Xét ΔABC có AB=BC>AC(6cm=6cm>4cm)
mà góc đối diện với cạnh AB là góc ACB
và góc đối diện với cạnh BC là góc BAC
và góc đối diện với cạnh AC là góc ABC
nên \(\widehat{ACB}=\widehat{BAC}>\widehat{ABC}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)
b) Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:
\(AC^2=AB^2+BC^2\)
\(\Leftrightarrow BC^2=AC^2-AB^2=10^2-6^2=64\)
hay BC=8(cm)
Xét ΔABC có AB<BC<AC(6cm<8cm<10cm)
mà góc đối diện với cạnh AB là góc ACB
và góc đối diện với cạnh BC là góc BAC
và góc đối diện với cạnh AC là góc ABC
nên \(\widehat{ACB}< \widehat{BAC}< \widehat{ABC}\)(Định lí quan hệ giữa cạnh và góc đối diện trong tam giác)
1.Cho tam giác ABC vuông tại A , đường phân giác BE , biết EC=3cm ,BC=6cm . Tính độ dài các đoạn thẳng AB, AC .
2.Cho tam giác ABC vuông tại A , đường cao AH . Biết AB:AC=3:7 , AH=42cm.Tính độ dài BH , CH
3.Cho tam giác ABC vuông tại A , đường cao AH . Biết BH:CH=9:16 , AH-48cm.Tính độ dài các cạnh góc vuông của tam giác ABC
4.Cho tam giác ABC vuông tại A ,phân giác AD , đường cao AH. Biết AB=21cm,AC=28cm .Tính HD
cho Tam giác ABC vuông tại A, biết AB=6cm, BC=10cm.Tính độ dài cạnh AC và chu vi tam giác ABC
AC=AB.AB+BC.BC
=6.6+10.10
=36+100
=136
=11.6
Chu vi tam giác= AB=AC=BC=6+10+11=27
(Ko biết có làm đúng ko)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow AC^2=BC^2-AB^2=10^2-6^2=64\)
hay AC=8(cm)
Vậy: AC=8cm
Chu vi của tam giác ABC là:
C=AB+AC+BC=6+8+10=24(cm)
CHo tam giác ABC vuông tại A, đường caoAH. Kẻ HD vuông góc AB tại D, HE vuông góc AC tại E. Biết AB=6cm, AC=8cm. TÍnh chu vi, diện tích tam giác ADE
cho tam giác abc vuông tại a đường cao ah
a,biết ah=6cm,bh=3cm.tính ab,ac
b,biết ab=6cm,bh=3cm.tính ah,ac,bh
a/
Xét tg vuông ABH
\(AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+3^2}=3\sqrt{5}cm\)
\(AH^2=BH.CH\Rightarrow CH=\dfrac{AH^2}{BH}=\dfrac{6^2}{3}=12cm\)
Xét tg vuông ACH
\(AC=\sqrt{AH^2+CH^2}=\sqrt{6^2+12^2}=6\sqrt{5}cm\)
b/
\(AB^2=BH.BC\Rightarrow BC=\dfrac{AB^2}{BH}\)
CH=BC-BH
\(AH^2=BH.CH\)
Xét tg vuông ACH
\(AC=\sqrt{AH^2+CH^2}\)
Bạn tự thay số và tính toán nhé
Bài 1: Cho tam giác ABC vuông tại A, đường cao AH = 5cm. Biết CH = 6cm. tính:
a) AB, AC,BC và BH?
b) Diện tích tam giác ABC
Bài2: Cho tam giác ABC vuông tại A, đường cao AH; AB = 15cm; BC = 25cm. BTính:
a) AC,AH, HC và BH?
b) Diện tích tam giác ABC
\(1,\)
\(a,\) Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)
\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)
cho tam giác ABC vuông tại A, biết độ dài 2 cạnh góc vuông là AB=5cm và AC= 6cm. Tính chu vi tam giác ABC
cho tam giác ABC vuông tại a đường cao AH
a tìm AD? biết AB=6cm aC=8CM /
B CHỨNG minh tam GIÁC ABC đòng dạng với tam giác DBF