Tìm UCLN( 2013^2014 + 2015^2014 , 2013*2015)
Tìm x biết:
x-2014-2015/2013 + x-2013-2015/2014 + x-2014-2013/2015=3
\(x-2014-\frac{2015}{2013}+x-2013-\frac{2015}{2014}+x-2014-\frac{2013}{2015}=3\)
\(\Rightarrow\left(x+x+x\right)+\left(-2014-2014\right)-2013-\frac{2015}{2013}-\frac{2015}{2014}-\frac{2013}{2015}=3\)
\(3x-2013-\frac{2015}{2013}-\frac{2015}{2014}-\frac{2013}{2015}=3\)
\(3x=3+2013+\frac{2015}{2013}+\frac{2015}{2014}+\frac{2013}{2015}\)
bạn ơi bài này số lớn quá bạn sử dungjmays tính rồi tự tính nhé
Đáp án của bạn Hoàng Đình Đại sai rùi nhưng dù sao cx cảm ơn nhiều
So sánh : C= 2013/2013+2014 + 2014/2014+2015 + 2015/2015+2016 ; D=2
\(C=\dfrac{2013}{2013}+2014+\dfrac{2014}{2014}+2015+\dfrac{2015}{2015}+2016\)
\(=1+2014+1+2015+1+2016\)
\(=6048>2\)
Vậy: \(C>D\)
Tính:
\(\frac{1}{1+\frac{2013}{2014}+\frac{2013}{2015}}+\frac{1}{1+\frac{2014}{2015}+\frac{2014}{2013}}+\frac{1}{1+\frac{2015}{2013}+\frac{2015}{2014}}\)
so sánh A=2013/2014 + 2014/2015 + 2015/2016 và B=2013+2014+2015/2014+2015+2016
A = \(\frac{2013}{2014}+\frac{2014}{2015}>\frac{1}{2}+\frac{1}{2}=1\)
\(B=\frac{2013+2014+2015}{2014+2015+2016}<1\)
\(Vậy:A>B\)
Đúng nha Nguyễn Bình Minh
so sánh:
\(A=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}\) và\(B=\) \(\frac{2013+2014+2015}{2014+2015+2016}\)
\(B=\frac{2013}{2014+2015+2016}+\frac{2014}{2014+2015+2016}+\frac{2015}{2014+2015+2016}\)
Ta có: \(\frac{2013}{2014}>\frac{2013}{2014+2015+2016}\)
\(\frac{2014}{2015}>\frac{2014}{2014+2015+2016}\)
\(\frac{2015}{2016}>\frac{2015}{2014+2015+2016}\)
\(\Rightarrow\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}>\frac{2013+2014+2015}{2014+2015+2016}\)
Vậy: \(A>B\)
So sánh các biểu thức sau: A =2013+2014/2014+2015 và B=2013/2014 + 2014/2015
A=\(\dfrac{2013+2014}{2014+2015}=\dfrac{2013}{2014+2015}+\dfrac{2014}{2014+2015}\)
B=\(\dfrac{2013}{2014}+\dfrac{2014}{2015}\)
Vì \(\dfrac{2013}{2014}>\dfrac{2013}{2014+2015}\); \(\dfrac{2014}{2015}>\dfrac{2014}{2014+2015}\) nên B>A
(1/2012+1/2013-1/2014)/(5/2012+5/2013-5/2014)-(2/2103+2/2014-2/2015)/(3/2013+3/2014-3/2015)
\(\frac{\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}}{\frac{5}{2012}+\frac{5}{2013}-\frac{5}{2014}}-\frac{\frac{2}{2013}+\frac{2}{2014}-\frac{2}{2015}}{\frac{3}{2013}+\frac{3}{2014}-\frac{3}{2015}}\)
=\(\frac{\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}}{5\left(\frac{1}{2012}+\frac{1}{2013}-\frac{1}{2014}\right)}-\frac{2\left(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}\right)}{3\left(\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}\right)}=\frac{1}{5}-\frac{2}{3}=\frac{3}{15}-\frac{10}{15}=-\frac{7}{15}\)
tìm giá trị của biểu thức sau bằng cách hợp lí:
C= \(\dfrac{2014\left(2015^2+2016\right)-2016\left(2015^2-2014\right)}{2014\left(2013^2-2012\right)-2012\left(2013^2+2014\right)}\)
\(C=\dfrac{2014\left(2015^2+2016\right)-2016\left(2015^2-2014\right)}{2014\left(2013^2-2012\right)-2012\left(2013^2+2014\right)}\)
\(=\dfrac{2.2014.2016+2014.2015^2-2016.2015^2}{2014.2013^2-2012.2013^2-2.2012.2014}\)
\(=\dfrac{2.\left(2015+1\right)\left(2015-1\right)-2.2015^2}{2.2013^2-2.\left(2013+1\right)\left(2013-1\right)}\)
\(=\dfrac{2.\left(2015^2-1\right)-2.2015^2}{2.2013^2-2.\left(2013^2-1\right)}=\dfrac{-2}{2}=-1\)
Không tính cụ thể , hãy sắp xếp các biểu thức sau theo thứ tự giảm dần :
\(\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}\)
\(\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}\)
\(\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}\)
\(\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}\)
\(\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}\)
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}$
So sánh: 2013/2014+2014/2015+2015/2013 với 3