Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Hoàng Thiên Bảo
Xem chi tiết
Tuấn kiệt
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 7 2023 lúc 23:09

a: ΔABC cân tại A có AM là trung tuyến

nên AM vuông góc BC

b: Xét ΔDBC có

BA là trung tuyến

BA=CD/2

=>ΔDBC vuông tại B

c: ΔABD cân tại A có AE là đường cao

nên E là trung điểm của BD

d: Xét ΔDBC có BE/BD=BM/BC

nên EM//DC

Gia Huy
6 tháng 7 2023 lúc 6:47

loading...

loading...

Nguyễn Lê Ngọc Mai
Xem chi tiết
zinzlinh
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 4 2019 lúc 12:21

Xét ∆ ABC vuông tại A ta có:

Vì ABC vuông tại A ta có:

Đáp án cần chọn là: C

Bùi Thị Minh Phương
Xem chi tiết
Nguyễn Ngọc Lộc
28 tháng 6 2021 lúc 17:45

b,- Ta có : AM là đường trung tuyến của tam giác vuông ABC .

=> AM = BM = CM = KM .

Xét \(\Delta MKC\)\(\Delta MAB\) có :

\(\left\{{}\begin{matrix}BM=MC\\AM=MK\\\widehat{BMA}=\widehat{KMC}\end{matrix}\right.\)

=> \(\Delta MKC\) = \(\Delta MAB\) ( c - g - c )

- Xét tứ giác ABKC có :

AM = BM = CM = KM và tam giác ABC vuông tại A .

=> Tứ giác ABKC là hình chữ nhật.

=> KC vuông góc với AC .

c, - Áp dụng định lý pitago vào tam giác ABC vuông tại A :

\(BC=\sqrt{AB^2+AC^2}=13\left(cm\right)\)

Ta có : \(AM=\dfrac{1}{2}BC=\dfrac{13}{2}\)

Khang Hoàng
Xem chi tiết
Lê Song Phương
16 tháng 8 2023 lúc 6:41

 Ta có \(HN\perp AC\) và \(AB\perp AC\) nên AB//HN. Do đó tứ giác ABHN là hình thang        (1)

 Mặt khác, tam giác ABC vuông tại A có trung tuyến AM nên \(AM=\dfrac{1}{2}BC=BM\), suy ra tam giác MAB cân tại M hay \(\widehat{ABH}=\widehat{NAB}\)           (2)

 Từ (1) và (2), ta suy ra tứ giác ABHN là hình thang cân. (đpcm)

Hiền Chị
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 3 2023 lúc 13:00

a: Xét ΔABM và ΔACM co

AB=AC

BM=CM

AM chung

=>ΔABM=ΔACM

=>góc BAM=góc CAM

=>AM là phân giác của góc BAC

b: Xét ΔAME vuông tại E và ΔAMF vuông tại F có

AM chung

góc MAE=góc MAF
=>ΔAME=ΔAMF

=>AE=AF
=>ΔAEF cân tại A

Bùi Hương Giang
Xem chi tiết
vũ văn đạt
18 tháng 4 2019 lúc 21:47

Xét tam giác QMC và tam giác NMB có:

BM=CN(giả thiết)

NM=NQ(GT)

BMN=QMC(đối đỉnh)

\(\Rightarrow\)2 tam giác = nhau

\(\Rightarrow\)QC=BN(2 cạnh tương ứng)

+)Ta có:N trung điểm AC

             M trung điểm BC

Nên áp dụng bài toàn phụ về đường trung bình(ko biết thì nhớ search)

\(\Rightarrow\)MN//AB,MN=AB/2

\(\Rightarrow\)MQ//AB,MQ=AB/2(MN=MQ)

\(\Rightarrow\)MQ//AB,MQ=AP(AP=AB/2)

Ta có :MQ//AP<MQ=AP

Nên áp dụng tính chất đoạn chắn (tự search dùm nếu ko bít)

\(\Rightarrow\)AM=PQ.

(Kết luận thì tự đi mà viết mỏi tay VCL!!!)

Để phòng tránh copy ,vui lòng k cho vũ văn đạt đầu tiên
 

vũ văn đạt
18 tháng 4 2019 lúc 21:49

Câu b) tui đang nghĩ nha ! Chắc phải vài tiếng

vũ văn đạt
18 tháng 4 2019 lúc 21:50

À còn nữa , k là k đó,gõ nhầm