Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Thanh Hà
Xem chi tiết
Việt Phạm Lâm
19 tháng 7 2018 lúc 15:54

=1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101

=1-1/101

=100/101

k cho mình nha

Dương Lam Hàng
19 tháng 7 2018 lúc 15:55

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{101}\right)=\frac{1}{2}.\frac{100}{101}=\frac{50}{101}\)

phạm văn tuấn
19 tháng 7 2018 lúc 15:57

TA CÓ \(\frac{1}{1.3}+\frac{1}{3.5}+.....+\frac{1}{99.101}\)

              \(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{101}\)

                \(=\frac{1}{1}-\frac{1}{101}\)

                  \(=\frac{100}{101}\)

VŨ LÊ THẠCH THẢO
Xem chi tiết
Thu Thao
4 tháng 5 2016 lúc 20:26

 nhung ma ko cothoi gian giai

Muôn cảm xúc
4 tháng 5 2016 lúc 20:27

\(S1=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{99.101}\)

\(S1=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{101}=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\)

\(S2=\frac{5}{1.3}+\frac{5}{3.5}+....+\frac{5}{99.101}\)

\(S2=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-.....-\frac{1}{101}\right)=\frac{5}{2}.\left(\frac{1}{1}-\frac{1}{101}\right)=\frac{5}{2}\cdot\frac{100}{101}=\frac{250}{101}\)

VŨ LÊ THẠCH THẢO
4 tháng 5 2016 lúc 20:48

làm tắt thế ai mà hỉu đc

Nguyễn Thị Phương Thảo
Xem chi tiết
Sarah
29 tháng 7 2016 lúc 22:45

\(\text{Đ}\text{ặt}:A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+..+\frac{1}{99.101}\)

\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)

\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(2A=1-\frac{1}{101}\)

\(A=\frac{100}{101}:2=\frac{50}{101}\)

\(\Rightarrow\frac{1}{3}x.x=\frac{50}{101}\)

\(x.\left(\frac{1}{3}.1\right)=\frac{50}{101}\)

\(x.\frac{1}{3}=\frac{50}{101}\)

$x=\frac{50}{101}:\frac{1}{3}=\frac{150}{101}$

Phương Trình Hai Ẩn
27 tháng 7 2016 lúc 9:08

\(.\frac{1}{3}x.x=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(\frac{1}{3}xx=\frac{1}{2}.\left(1-\frac{1}{101}\right)\)

\(\frac{1}{3}xx=\frac{1}{2}.\left(\frac{100}{101}\right)\)

\(\frac{1}{3}xx=\frac{50}{101}\)

\(x.x=\frac{150}{101}\)

còn lại tự tính

Nguyễn Huệ Lam
27 tháng 7 2016 lúc 9:09

\(\frac{1}{3}x.x=1-\frac{1}{101}=\frac{100}{101}\)

\(x.x=\frac{100}{101}:\frac{1}{3}=\frac{300}{101}\)

\(x=\sqrt{\frac{300}{101}}\)

Tùng Võ Minh
Xem chi tiết
Lê Hà Phương
5 tháng 1 2016 lúc 16:33

\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

\(S=\frac{2}{2}.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)

\(S=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)

\(S=\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(S=\frac{1}{2}.\left(1-\frac{1}{101}\right)\)

\(S=\frac{1}{2}.\frac{100}{101}=\frac{50}{101}\)

Minh Triều
5 tháng 1 2016 lúc 16:17

nhân S cho 2 

Công thức \(\frac{2}{x.\left(x+2\right)}=\frac{1}{x}-\frac{1}{x+2}\)

Hà Phạm Như Ý
5 tháng 1 2016 lúc 16:27

\(S=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

\(S=\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.......+\frac{1}{99}-\frac{1}{101}\right).\frac{1}{2}\)

\(S=\left(\frac{1}{1}-\frac{1}{101}\right).\frac{1}{2}\)

\(S=\frac{100}{101}.\frac{1}{2}\)

\(S=\frac{50}{101}\)

Phan Thanh Hà
Xem chi tiết
Tẫn
19 tháng 7 2018 lúc 13:52

\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

\(=\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{101-99}{99.101}\)

\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)

\(=1-\frac{1}{101}\)

\(=\frac{100}{101}\)

Tẫn
20 tháng 7 2018 lúc 19:29

\(\frac{1}{1.3}+\frac{1}{3,5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)

\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\right)\)

\(=\frac{1}{2}.\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+...+\frac{101-99}{99.101}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{101}\right)\)

\(=\frac{1}{2}.\frac{100}{101}\)

\(=\frac{50}{101}\)

-.-

Hoàng hôn  ( Cool Team )
11 tháng 9 2019 lúc 20:05

1/1.3+1/3.5+1/5.7+...+1/99.101

=1/2.(2/1.3+2/3.5+2/5.7+...+2/99.101

=1/2.(1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101)

=1/2.(1-1/101)

=1/2.100/101

=50/101

Nguyễn Thu Hoan
Xem chi tiết
nguyen hong phuc
6 tháng 7 2017 lúc 12:12

= 4/1.3 x 9/2.4 x 16/3.5 x...x 10000/99.101

= 2.2/1.3 x 3.3/2.4 x 4.4/3.5 x..x 100.100/99.101

= (2.3.4. ... 100/1.2.3. .... 99) x (2.3.4. ... .100/3.4.5. ... .101)

= 100.2/101

=200/101

Phạm Phương Ngọc
7 tháng 3 2018 lúc 15:46

\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right)...\left(1+\frac{1}{99.101}\right)\)

\(\Rightarrow A=\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}.\frac{3.5+1}{3.5}.....\frac{99.101+1}{99.101}\)

\(\Rightarrow A=\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}.....\frac{10000}{99.101}\)

\(\Rightarrow A=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.....\frac{100^2}{99.101}\)

\(\Rightarrow A=\frac{\left(2.3.4.....100\right)\left(2.3.4.....100\right)}{\left(1.2.3.....99\right)\left(3.4.5.....101\right)}\)

\(\Rightarrow A=\frac{100.2}{101}=\frac{200}{101}\)

Aikatsu
28 tháng 3 2018 lúc 18:43

\(A=\left(1+\frac{1}{1\cdot3}\right)\)\(\left(1+\frac{1}{2\cdot4}\right)\)\(\left(1+\frac{1}{3\cdot5}\right)\)\(......\left(1+\frac{1}{99\cdot101}\right)\)

\(=\frac{4}{1\cdot3}\)\(\cdot\frac{9}{2\cdot4}\)\(\cdot\frac{16}{3\cdot5}\)\(\cdot\cdot\cdot\cdot\cdot\frac{10000}{99\cdot101}\)

\(=\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot\frac{4^2}{3\cdot5}\cdot\cdot\cdot\cdot\frac{100^2}{99\cdot101}\)

\(=\frac{2^2\cdot3^2\cdot4^2\cdot\cdot\cdot100^2}{1\cdot3\cdot2\cdot4\cdot3\cdot5\cdot\cdot\cdot99\cdot101}\)

\(=\frac{2\cdot3\cdot4\cdot\cdot\cdot\cdot100}{1\cdot2\cdot3\cdot4\cdot\cdot\cdot\cdot99\cdot101}\cdot\frac{2\cdot3\cdot4\cdot\cdot\cdot\cdot100}{3\cdot4\cdot5\cdot\cdot\cdot\cdot99}\)

\(=\frac{1}{101}\cdot200\)

\(=\frac{200}{101}\)

etherthđfgb
Xem chi tiết
Nguyễn Thị Thu Huyền
2 tháng 4 2017 lúc 11:35

biểu thức trên = \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}=\frac{100}{101}< 1\)

vậy A<1

trantanhung
2 tháng 4 2017 lúc 11:38

Ta thấy

Đức Phạm
2 tháng 4 2017 lúc 11:45

\(=1-\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}+\frac{1}{101}\)

\(=\left(\frac{1}{1}+\frac{1}{101}\right)\)

\(=\frac{102}{101}\)

\(\Rightarrow A>1\)

pham ngoc linh
Xem chi tiết
pham ngoc linh
Xem chi tiết
Nguyễn Vũ Anh Thư
2 tháng 4 2015 lúc 21:02

Ta có : A = (4/1.3) . (9/2.4).......(10000/99.101)

               = (2.2/1.3). (3.3/2.4).......(100.100/99.101)

              =(2.3.4......99.100/1.2.3.....98.99 ) . ( 2.3.4.......100/3.4.5.....101)

               =(100/1) . ( 2/101 )

              =200/101