\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+......+\frac{1}{89.91}\)
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...\frac{1}{13.15}\)
\(\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{13\cdot15}\)
\(=\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{13\cdot15}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{13}-\frac{1}{15}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{15}\right)\)
\(=\frac{1}{2}\cdot\frac{4}{15}\)
\(=\frac{2}{15}\)
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{13.15}\)
\(=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{1}{13.15}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{15}\right)\)
\(=\frac{1}{2}.\)4/15
=2/15
Gọi \(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{13\cdot15}\)
=>\(2A=\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{13\cdot15}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{13}-\frac{1}{15}\)
\(=\frac{1}{3}-\frac{1}{15}\)
\(=\frac{5}{15}-\frac{1}{15}\)
\(=\frac{4}{15}\)
Mà A = 2A : 2
=>\(A=\frac{4}{15}:2\)
\(=\frac{4}{15}\cdot\frac{1}{2}\)
\(=\frac{4}{30}=\frac{2}{15}\)
M = \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\)
\(M=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}+\frac{1}{11.13}\)
\(M=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\)
\(M=\frac{1}{3}-\frac{1}{13}\)
\(M=\frac{10}{39}\)
\(M=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(M=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{11}-\frac{1}{13}\right)\)
\(M=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{13}\right)\)
\(M=\frac{1}{2}.\frac{10}{39}\)
\(M=\frac{5}{39}\)
tk mk nha bn
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+..........+\frac{1}{49.51}=?\)
\(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{49.51}=\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.51}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)\)
\(=\frac{1}{2}.\frac{16}{51}=\frac{8}{51}\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{51}\right)=\frac{1}{2}.\frac{16}{51}=\frac{8}{51}\)
Tính nhanh tổng sau:\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{87.89}\)
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{87.89}\)
= \(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{87}-\frac{1}{89}\right)\)
= \(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{89}\right)\)
= \(\frac{1}{2}.\frac{86}{267}=\frac{43}{267}\)
~~~
Đáp số to quá, tớ không chắc là mình đúng đâu.
#Sunrise
=1/3-1/5+1/5-1/7+1/7-1/9+.....+1/87-1/89
=1/3-1/89
=86/267
Tính tổng: \(S=\frac{1}{3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{999.1001}\)
Tính tổng Q:
\(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+....+\frac{1}{2013.2015}\)
Q = \(\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2013.2015}\)
Q = \(\frac{1}{2}.\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{1}{2013.2015}\right)\)
Q = \(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{2015}\right)\)
Q = \(\frac{1}{2}.\frac{2012}{6045}=\frac{1002}{6045}\)
\(Q=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{2013.2015}\)
\(\Rightarrow Q.2=2.\left(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{2013.2015}\right)\)
\(\Rightarrow Q.2=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{2013.2015}\)
\(\Rightarrow Q.2=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2013}-\frac{1}{2015}\)
\(\Rightarrow Q.2=\frac{1}{3}-\frac{1}{2015}\)
\(\Rightarrow Q.2=\frac{2012}{6045}\)
\(\Rightarrow Q=\frac{2012}{6045}.\frac{1}{2}=\frac{1006}{6045}\)
Mk tinh nhẩm, nên ko bt kết quả có đúng ko
nên bn thử tính lại kết quả nha!!!
Chúc bn hok tốt!!!
Tính: \(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+..+\frac{1}{13.15}\)
\(A=\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{13.15}=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{15}\right)=\frac{1}{2}.\frac{4}{15}=\frac{2}{15}\)
\(A=\frac{1}{3\cdot5}+\frac{1}{5\cdot7}+\frac{1}{7\cdot9}+...+\frac{1}{13\cdot15}=\frac{1}{2}\left(\frac{2}{3\cdot5}+\frac{2}{5\cdot7}+\frac{2}{7\cdot9}+...+\frac{2}{13\cdot15}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\)
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{15}\right)=\frac{1}{2}\cdot\frac{4}{15}=\frac{2}{15}\)
\(A=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{13.15}\)
\(A=\frac{1}{2}\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{13.15}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{13}-\frac{1}{15}\right)\)
\(A=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{15}\right)=\frac{1}{2}\cdot\frac{4}{15}=\frac{2}{15}\)
Tính: \(\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{2013.2015}\)
có công thư rồi mà bài này dễ đợi mk 3' nhé mk giải cho
\(=\frac{1}{2}\left(\frac{1}{3}-\frac{1}{2015}\right)=\frac{1}{2}.\frac{2012}{6045}=\frac{1006}{6045}\)
lm tắt cu~g chả bt đúng ko ^^, thông cảm
\(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(\frac{1}{2}.\left(\frac{1}{3}-\frac{1}{2015}\right)\)
\(\frac{1}{2}.\frac{2012}{6045}\)
=\(\frac{1006}{6045}\)
ok bạn nhé
Tính tổng: \(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(S=\frac{1}{1.3}-\frac{1}{2.4}+\frac{1}{3.5}-\frac{1}{4.6}+\frac{1}{5.7}-\frac{1}{6.8}+\frac{1}{7.9}-\frac{1}{8.10}\)
\(=\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}\right)-\left(\frac{1}{2.4}-\frac{1}{4.6}-\frac{1}{6.8}-\frac{1}{8.10}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-...+\frac{1}{7}-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-...+\frac{1}{8}-\frac{1}{10}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{9}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=\frac{1}{2}.\frac{8}{9}-\frac{1}{2}.\frac{2}{5}\)
\(=\frac{4}{9}-\frac{1}{5}\)
\(=\frac{11}{45}\)