Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thảo Linh Nguyễn
Xem chi tiết
do thanh dat
Xem chi tiết
Thái Văn Tiến Dũng
4 tháng 4 2016 lúc 14:33

a,1/102+1/112+1/122+...+1/1002<1/9.10+1/10.11+1/11.12+...+1/99.100=1/9-1/10+1/10-1/11+...+1/99-1/100

                                                                                                    =1/9-1/100=91/900<3/4

Vậy 1/102+1/112+1/122+...+1/1002<3/4

b,1/22+1/32+1/42+...+1/1002<1/1.2+1/2.3+1/3.4+...+1/99.100=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100

                                                                                        =1-1/100=99/100

Vậy 1/22+1/32+1/42+...+1/1002<99/100

c,1/22+1/32+1/42+...+1/1002<1/22+(1/2.3+1/3.3+...+1/99.100)=1/4+(1/2-1/3+1/3-1/4+...+1/99-1/100)

                                                                                       =1/4+(1/2-1/100)=1/4+49/100=74/100<3/4=75/100

Vậy 1/22+1/32+1/42+...+1/1002<3/4

Nguyễn Đức Hiếu
Xem chi tiết
Trần Phúc Khang
11 tháng 5 2019 lúc 17:09

Câu 2 sai đề, thử rồi

Trần Hoàng Phương Anh
Xem chi tiết
Lê Anh Duy
30 tháng 3 2017 lúc 22:35

Khó dữ vậy!!!!

thánh yasuo lmht
6 tháng 5 2017 lúc 14:49

Đợi tí , mạng chậm

thánh yasuo lmht
6 tháng 5 2017 lúc 21:54

Có : \(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}\)

\(3A-A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow2A< 1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{99}}\)

Có: \(6A< 3+1+\frac{1}{3}+...+\frac{1}{3^{98}}\)

\(6A-2A< 3-\frac{1}{3^{99}}< 3\)

\(\Rightarrow4A< 3\Rightarrow A< \frac{3}{4}\)(đpcm)

Cô Bé Yêu Đời
Xem chi tiết
lê phúc
3 tháng 9 2019 lúc 19:53

lolang

bơ tao đi mà sống
Xem chi tiết
Trường
30 tháng 4 2019 lúc 15:52

1/ Tính:

\(\frac{3}{2}-\frac{5}{6}+\frac{7}{12}-\frac{9}{20}+\frac{11}{30}-\frac{13}{42}+\frac{15}{56}-\frac{17}{72}+\frac{19}{90}\) 

\(=\frac{3}{1.2}-\frac{5}{2.3}+\frac{7}{3.4}-\frac{9}{4.5}+\frac{11}{5.6}-\frac{13}{6.7}+\frac{15}{7.8}-\frac{17}{8.9}+\frac{19}{9.10}\) 

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\) 

\(=1-\frac{1}{10}\) 

\(=\frac{9}{10}\)

ThuậnMinh Gilenchi
Xem chi tiết
OoO Kún Chảnh OoO
Xem chi tiết
Trần Thị Loan
21 tháng 9 2015 lúc 14:36

a) Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)=> \(2.A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\)

=> \(2.A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^9}+\frac{1}{2^{10}}\right)\)

\(A=1-\frac{1}{2^{10}}\)=> \(1-A=1-\left(1-\frac{1}{2^{10}}\right)=\frac{1}{2^{10}}>\frac{1}{2^{11}}\)=> đpcm

b) Đặt B = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\)

Vì \(\frac{1}{2^2}

Phương Mĩ Linh
Xem chi tiết
tuandung2912
2 tháng 4 2023 lúc 21:34

yamate