cho a/b=b/c=c/d. chứng minh (a/b+b/c+c/a)^3 = a/d
Cho a+b+c+d=0
a) Chứng minh a^3+b^3+c^3+d^3=3(ab-cd)(c+d)
b)Chứng minh (a+b+c+)^3=a^3 + b^3 + c^3+3(a+b)(b+c)(c+a)
c)Cho c-a=b+d. Chứng Minh a^3+b^3-c^3+d^3=3(d-c)(ab+cd)
a+b+c+d=0
=>a+b=-(c+d)
=> (a+b)^3=-(c+d)^3
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d)
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d)
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d))
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (đpcm)
a, Cho a^2+b^2+c^2+3=2(a+b+c)
Chứng minh: a=b=c=1
b, Cho (a+b+c)^2=3(ab+ac+bc)
Chừng minh: a=b=c
c, Cho a,b,c,d (a,b,c,d khác 0) và (a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)
Chừng minh: a/c=b/d
d, Cho (a-b)^2+(b-c)^2+(c-a)^2=(a+b-2c)^2+(b+c-2a)^2+(c+a-2b)^2
Chứng minh:a=b=c
a) \(a^2+b^2+c^2+3=2\left(a+b+c\right)\)
<=> \(a^2-2a+1+b^2-2b+1+c^2-2c+1=0\)
<=> \(\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2=0\)
Tổng 3 số không âm bằng 0 <=> a=b=c=1
b) \(\left(a+b+c\right)^2=a^2+b^2+c^2+2ab+2ac+2bc=3ab+3ac+3bc\)
<=> \(a^2-ab+b^2-bc+c^2-ac=0\)
<=> \(2a^2-2ab+2b^2-2bc+2c^2-2ac=0\)
<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Tổng 3 số không âm bằng 0 <=> a=b=c
#NguyễnHoàngTiến ơi cảm ơn bạn đã giúp mình nhưng cho mình hỏi left với right trong bài của bạn có nghĩa là gì vậy hả, mình không hiểu lắm.
Cho a/b=c/d. Chứng minh:
1) (a+c)b=(b+d)a
2) (b+d)c=(a+c)d
3)(a+b)(c-d)=(a-b)(c+d)
Do a/b=c/d ⇔ ad=bc
1) Ta có: (a+c)b=ab+bc
(b+d)a=ab+ad
Do bc=ad nên ab+ad=ab+bc
Suy ra (a+c)b=(b+d)a (đpcm)
2) Ta có: (b+d)c=bc+dc
(a+c)d=ad+cd
Do bc=ad nên bc+dc=ad+cd
Suy ra (b+d)c=(b+d)c (đpcm)
3)Ta có:(a+b)(c-d)=ac-ad+bc-bd=(ac-bd)-(ad-bc)
(a-b)(c+d)=ac+ad-bc-bd=(ac-bd)+(ad-bc)
Do ad=bc ⇔ ad-bc=0 nên (ac-bd)-(ad-bc)=(ac-bd)+(ad-bc)
⇔(a+b)(c-d)= (a-b)(c+d) (đpcm)
A) \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt,c=dt\)
\(\frac{a}{a+b}=\frac{bt}{bt+b}=\frac{t}{t+1},\frac{c}{c+d}=\frac{dt}{dt+d}=\frac{t}{t+1}\)
suy ra đpcm.
\(\frac{a-b}{c-d}=\frac{bt-b}{dt-d}=\frac{b}{d},\frac{a+b}{c+d}=\frac{bt+b}{dt+d}=\frac{b}{d}\)
suy ra đpcm.
B) \(\frac{a+3c}{b+3d}=\frac{a+c}{b+d}=\frac{\left(a+3c\right)-\left(a+c\right)}{\left(b+3d\right)-\left(b+d\right)}=\frac{2c}{2d}=\frac{c}{d}\)
\(\frac{a+3c}{b+3d}=\frac{a+c}{b+d}=\frac{\left(a+3c\right)-3\left(a+c\right)}{\left(b+3d\right)-3\left(b+d\right)}=\frac{-2a}{-2b}=\frac{a}{b}\)
suy ra đpcm.
cho a/b = b/c = c/d . chứng minh rằng ( a+b+c/b+c+d ) 3 3 = a/d
\(\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\) ; \(\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{a^3}{b^3}\)
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
\(\Rightarrow\dfrac{a^3}{b^3}=\dfrac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}=\dfrac{a}{d}\).
a, a+b/a-b=c+a/c-a Chứng minh a^2=b.c
b, a/b=b/c=c/d. Chứng minh a^3+b^3+c^3/b^3+c^3+d^3=a/d
Cho a/b=b/c=c/d với b+c+d khác 0. Chứng minh: +) a^3+b^3+c^3/ b^3+c^3 - d^3=(a+d-c/b+c-d)^3
Lê Minh Tuấn bn tham khảo nha:
a+b+c+d=0
=>a+b=-(c+d)
=> (a+b)^3=-(c+d)^3
=> a^3+b^3+3ab(a+b)=-c^3-d^3-3cd(c+d)
=> a^3+b^3+c^3+d^3=-3ab(a+b)-3cd(c+d)
=> a^3+b^3+c^3+d^3=3ab(c+d)-3cd(c+d) ( vi a+b = - (c+d))
==> a^3 +b^^3+c^3+d^3==3(c+d)(ab-cd) (dpcm)
Cho a/b = b/c = c/d Chứng minh (a+b+c/b+c+d)^3 = a/d
Ta có :
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
Áp dụng t/c dãy tỉ số bawg nhau ta có :
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)
\(\Leftrightarrow\left(\dfrac{a}{b}\right)^3=\left(\dfrac{b}{c}\right)^3=\left(\dfrac{c}{d}\right)^3=\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{b}.\dfrac{a}{b}.\dfrac{a}{b}=\dfrac{b}{c}.\dfrac{b}{c}.\dfrac{b}{c}=\dfrac{c}{d}.\dfrac{c}{d}.\dfrac{c}{d}=\dfrac{a}{d}\)
\(\Leftrightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{d}\left(đpcm\right)\)
cho a/b = b/c = c/d. chứng minh (a+b+c/b+c+d)^3 = a/d
Cho a/b=b/c=c/d. Chứng minh: (a+b+c/b+c+d)^3=a/d