cho abc khac 1 va -1 va [ab+1]/b=[bc+1]/c=[ca+1]/a.chung minh a=b=c
cho a,b,c khac nhau doi mot va 1/a+1/b+1/c=0.rut gon cac bieu thuc
N=bc/a^2+2bc+CA/B^2+2AC+AB/C^2+2AB
Cho a,b,c la ba so khac 0 va a.b.c=1 thoả mãn: ab/a+b=bc/b+c=ca/c+a
Tính gia tri M= ab+bc+ca / a2+b2+c2
Câu hỏi của Đậu Đình Kiên - Toán lớp 7 - Học toán với OnlineMath
cho a,b,c la 3 so thuc doi mot khac nhau va khac khong, thoa man: a+1/b=b+1/c=c+1/a. hay chung minh rang abc=1 hoac abc=-1
cho ab/a+b=bc/b+c=ca/a+c va abc=1 tu do tinh M = ab+bc+ca/a^2+b^2+c^2
cho a/b=c/d khac 1 va a,b,c,d khac 0. chung minh (a-b)^2/(c-d)^2=ab/cd
cho a b c doi mot khac nhau va khac 0 biet ab la so nguyen to va ab/bc=b/c tim abc (ab, bc,abc co gach ngang)
bai 1:cho goc xOy la goc tu,trong goc nay ve cac tia Om,On sao cho Ox vuong goc voi On,Oy vuong goc voi Om.
chung minh rang goc xOy va goc mOn co trung tia phan giap
bai 2:cho goc AOB =150 do.ve trong goc nay hai tia Ox va Oy sao cho OA vuong goc voi Ox ,OB vuong goc voi Oy.tinh goc xOy?
bai 3:cho a+b/a-b=c+a/c-a voi a khac b,c khac a.chung minh a^2=b*c
cho a,b,c duong va abc=1
cmr \(Q=\sqrt{\frac{a}{1+a+ab}}+\sqrt{\frac{b}{1+b+bc}}+\sqrt{\frac{c}{1+c+ca}}\le\sqrt{a+b+c}\)
Áp dụng bất đẳng thức bu nhi a ta có \(\left(x^2+y^2+z^2\right)3\ge\left(x+y+z\right)^2\)
Áp dụng ta có
\(Q^2\le3\left(\frac{a}{1+a+ab}+\frac{b}{1+b+bc}+\frac{c}{1+c+ca}\right)\)
đặt \(M=\frac{a}{1+a+ab}+\frac{b}{1+b+bc}+\frac{c}{1+c+ca}=\frac{a}{1+a+ab}+\frac{ab}{a+ab+abc}+\frac{abc}{ab+abc+â^2bc}\)
\(=\frac{1}{a+ab+1}+\frac{a}{a+ab+1}+\frac{ab}{1+ab+1}=1\)
=> \(Q^2\le3\Rightarrow Q\le\sqrt{3}\)
mặt khác Áp dụng cô si ta có
\(a+b+c\ge3\sqrt[3]{abc}=3\Rightarrow\sqrt{a+b+c}\ge\sqrt{3}\Rightarrow\sqrt{a+b+c}\ge Q\) (ĐPCM)
ta có:
\(\frac{a}{1+a+ab}+\frac{b}{1+b+bc}+\frac{c}{1+c+ca}=\frac{a}{abc+a+ab}+\frac{b}{1+b+bc}+\frac{bc}{b+bc+abc}\)
\(=\frac{1}{1+b+bc}+\frac{b}{1+b+bc}+\frac{bc}{1+b+bc}=1\)
ta có:
\(Q^2\le3\left(\frac{a}{1+a+ab}+\frac{b}{1+b+bc}+\frac{c}{1+c+ca}\right)=3\)
\(\Rightarrow Q\le\sqrt{3}=\sqrt{3\sqrt[3]{abc}}\le\sqrt{a+b+c}\left(Q.E.D\right)\)
dấu = xảy ra khi a=b=c=1
cho a,b,c >0 va abc=1 c/m
\(\frac{1+ab^2}{c^3}+\frac{1+bc^2}{a^3}+\frac{1+ca^2}{b^3}>=\frac{18}{a^3+b^3+c^3}\)
Ta có 1 + ab2 \(\ge\)\(2b\sqrt{a}\)
1 + bc2 \(\ge2c\sqrt{b}\)
1 + ca2 \(\ge2a\sqrt{c}\)
VT \(\ge\)\(2\left(\frac{b\sqrt{a}}{c^3}+\frac{c\sqrt{b}}{a^3}+\frac{a\sqrt{c}}{b^3}\right)\)
\(\ge2\frac{\left(\sqrt[4]{b^2a}+\sqrt[4]{c^2b}+\sqrt[4]{a^2c}\right)^2}{a^3+b^3+c^3}\)
\(\ge2\frac{\left(3\sqrt[12]{a^3b^3c^3}\right)^2}{a^3+b^3+c^3}\)
\(\ge\frac{18}{a^3+b^3+c^3}\)