Cho đa thức ax4-6x3+7-2x+3x2-4x4
Tìm a để đa thức trên có bậc là 3
Cho đa thức \(ax4-2x^3+3x^2-2x^4-7x+1\). Biết rằng đa thức này có bậc 4 và a là số nguyên tố nhỏ hơn 5. Tìm a?
A(x) = ax4 - 2x3 + 3x2 - 2x4 - 7x + 1
A(x) = (ax4 - 2x4) - 2x3 + 3x2 - 2x4 - 7x + 1
A(x) = (a-2)x4 - 2x3 + 3x2 - 2x4 - 7x + 1
Vì đa thức trên có bậc là 4 nên a - 2 # 0 ⇒ a # 2
Vì a là số nguyên tố nhỏ hơn 5 nên a = 2; a =3
a = 2 (loại)
Vậy a = 3
Kết luận a = 3
a) Thực hiện phép chia đa thức (2x4 - 6x3 +12x2 - 14x + 3) cho đa thức (x2 – 4x +1)
b) Thực hiện phép chia đa thức (2x4 – 5x3 + 2x2 +2x - 1) cho đa thức (x2 – x - 1)
Bài 2:
a) Tìm a để đa thức (2x4 + x3 - 3x2 + 5x + a) chia hết cho đa thức (x2 - x +1)
Bài 1:
a: \(=\dfrac{2x^4-8x^3+2x^2+2x^3-8x^2+2x+18x^2-72x+18+56x-15}{x^2-4x+1}\)
\(=2x^2+2x+18+\dfrac{56x-15}{x^2-4x+1}\)
Tìm bậc của mỗi đa thức sau:
3 x 2 + 7 x 3 - 3 x 3 + 6 x 3 - 3 x 2
3x2 + 7x3 – 3x3 + 6x3 – 3x2 = (7x3 – 3x3 + 6x3) + (3x2 - 3x2) = 10x3.
Đa thức sau khi rút gọn có 1 hạng tử là 10x3 có bậc 3
⇒ Đa thức có bậc 3.
1.Tìm nghiệm đa thức
1)6x3 - 2x2
2)|3x + 7| + |2x2 - 2|
2.Chứng minh đa thức ko có nghiệm
1)x2 + 2x + 4
2)3x2 - x + 5
3.Tìm các hệ số a, b, c, d của đa thức f(x) = ax3 + bx2+ cx + d
Biết f(0)=5; f(1)=4; f(2)=31; f(3)=88
Bài 1:
1.
$6x^3-2x^2=0$
$2x^2(3x-1)=0$
$\Rightarrow 2x^2=0$ hoặc $3x-1=0$
$\Rightarrow x=0$ hoặc $x=\frac{1}{3}$
Đây chính là 2 nghiệm của đa thức
2.
$|3x+7|\geq 0$
$|2x^2-2|\geq 0$
Để tổng 2 số bằng $0$ thì: $|3x+7|=|2x^2-2|=0$
$\Rightarrow x=\frac{-7}{3}$ và $x=\pm 1$ (vô lý)
Vậy đa thức vô nghiệm.
Bài 2:
1. $x^2+2x+4=(x^2+2x+1)+3=(x+1)^2+3$
Do $(x+1)^2\geq 0$ với mọi $x$ nên $x^2+2x+4=(x+1)^2+3\geq 3>0$ với mọi $x$
$\Rightarrow x^2+2x+4\neq 0$ với mọi $x$
Do đó đa thức vô nghiệm
2.
$3x^2-x+5=2x^2+(x^2-x+\frac{1}{4})+\frac{19}{4}$
$=2x^2+(x-\frac{1}{2})^2+\frac{19}{4}\geq 0+0+\frac{19}{4}>0$ với mọi $x$
Vậy đa thức khác 0 với mọi $x$
Do đó đa thức không có nghiệm.
Bài 3:
$f(0)=a.0^3+b.0^2+c.0+d=d=5$
$f(1)=a+b+c+d=4$
$a+b+c=4-d=-1(*)$
$f(2)=8a+4b+2c+d=31$
$8a+4b+2c=31-d=26$
$4a+2b+c=13(**)$
$f(3)=27a+9b+3c+d=88$
$27a+9b+3c=88-d=83(***)$
Từ $(*); (**); (***)$ suy ra $a=\frac{1}{3}; b=13; c=\frac{-43}{3}$
Vậy.......
tìm đa thức A biết A/2x-1=6x3+3x2/4x2-1
\(\dfrac{A}{2x-1}=\dfrac{6x^3+3x^2}{4x^2-1}\Leftrightarrow\dfrac{A}{2x-1}=\dfrac{3x^2\left(2x+1\right)}{\left(2x-1\right)\left(2x+1\right)}\Leftrightarrow\dfrac{A}{2x-1}=\dfrac{3x^2}{2x-1}\Leftrightarrow A=3x^2\)
Ta có: \(\dfrac{A}{2x-1}=\dfrac{6x^3+3x^2}{4x^2-1}\)
\(\Leftrightarrow\dfrac{A}{2x-1}=\dfrac{3x^2\left(2x+1\right)}{\left(2x+1\right)\left(2x-1\right)}\)
\(\Leftrightarrow\dfrac{A}{2x-1}=\dfrac{3x^2}{2x-1}\)
hay \(A=3x^2\)
B. Phần tự luận (6 điểm)
Cho hai đa thức
f ( x ) = x 3 - 3 x 2 + 2 x - 5 + x 2 , g ( x ) = - x 3 - 5 x + 3 x 2 + 3 x + 4 .
a. Thu gọn các đa thức trên và sắp xếp theo lũy thừa giảm dần của biến.
Xác định bậc của mỗi đa thức
a. Ta có:
f(x) = x3 - 3x2 + 2x - 5 + x2 = x3 -2x2 + 2x- 5
Bậc của đa thức f(x) là 3 (0.5 điểm)
g(x) = -x3 - 5x + 3x2 + 3x + 4 = -x3 + 3x2 - 2x + 4
Bậc của đa thức g(x) là 3 (0.5 điểm)
câu 1:Sau khi thu gọn đơn thức -3x2Ay.\(\dfrac{2}{3}z\) ta được một đơn thức có hệ số là
A,M=-3 B,8 C,-8 D,-12
Câu 2:cho đa thức -2x4+3x2-6x3+9x hệ số cao nhất và hệ số tự đo của đa thức trên là:
A,-2 và 9 B,6 và 0 C,-6 và 0 D,-6 và 9
Câu 3:Nghiệm của đa thức -9x+3 là:
A,-3 B,\(\dfrac{1}{3}\) C,-\(\dfrac{1}{9}\) D,\(\dfrac{1}{9}\)
Cho đa thức P=2ax⁵y²-3/2x²y³-2024+y+1(trong đó a là hằng số) tìm giá trị của hằng số a để đa thức đã cho có bậc là 3
Cho A+3x^2-2x+1
Tim đa thức A để tổng là đa thức có bậc 0
Ta có : \(A+3x^2-2x+1=0\)
\(\Leftrightarrow A=-3x^2+2x-1\)
Vậy \(A=-3x^2+2x-1\)