Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hưng Bùi Minh
Xem chi tiết
Naughty Princess
16 tháng 12 2016 lúc 9:07

 C = 2+2^2 + 2^3 + 2^4 + 2^5 ..... + 2^97 + 2^98 + 2^99 + 2^100

    = ( 2 + 2^2 + 2^3 + 2^4 + 2^5)+........+  (2^97 + 2^98 + 2^99 + 2^100 )

    = 2(1+2+2^2 + 2^3 + 2^4)+..........+ 2^96(1+2+2^2 + 2^3 + 2^4)

    =2.31 +...........+2^96.31

    = 31(2+....+2^96)

Vì  31(2+....+2^96) chia hết cho 31

nên C chia hết cho 31

Nhớ bấm đúng cho mình nhé bạn!!!!!!!!

Robby
Xem chi tiết
Nguyễn Lê Thanh Hà
3 tháng 8 2016 lúc 15:17

A=5+52+...+599+5100

=(5+52)+...+(599+5100)

=5.(1+5)+...+599.(1+5)

=5.6+...+599.6

=6.(5+...+599) chia hết cho 6 (dpcm)

Ccá câu khcs bạn cứ dựa vào câu a mà làm vì cách làm tương tự chỉ hơi khác 1 chút thôi

Chúc bạn học giỏi nha!!

Ngô Chi Lan
1 tháng 1 2021 lúc 16:59

\(A=5+5^2+5^3+...+5^{100}\)

\(=\left(5+5^2\right)+\left(5^3+5^4\right)+...\left(5^{99}+5^{100}\right)\)

\(=5\left(1+5\right)+5^3\left(1+5\right)+...+5^{99}\left(1+5\right)\)

\(=5.6+5^3.6+...+5^{99}.6\)

\(=6\left(5+5^3+...+5^{99}\right)⋮6\)(đpcm)

\(B=2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(=2.31+...+2^{96}.31\)

\(=31\left(2+...+9^{96}\right)⋮31\)(đpcm)

\(C=3+3^2+3^3+...+3^{60}\)

\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)

\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{59}\left(1+3\right)\)

\(=3.4+3^3.4+...+3^{59}.4\)

\(=4\left(3+3^3+...+3^{59}\right)⋮4\)(đpcm)

\(C=3+3^2+3^3+...+3^{60}\)

\(=\left(3+3^2+3^3\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)

\(=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)

\(=3.13+...+3^{58}.13\)

\(=13\left(3+...+3^{58}\right)⋮13\)(đpcm)

Khách vãng lai đã xóa
Pham Tien Dat
Xem chi tiết
Thanh Hiền
28 tháng 10 2015 lúc 19:49

Bạn vào câu hỏi tương tự nha !!!

Khách vãng lai
Xem chi tiết
nguyễn hà
Xem chi tiết
Phạm Văn An
18 tháng 4 2016 lúc 22:48

C = 2 + 22 + 23 + ...+ 2100

Ta chia C thành 20 nhóm 5 số hạng liên tiếp:

C = (2 + 22 + 23 + 24 + 25)  + (26 + 27 + 28 + 29 + 210) + ...+ (296 + 297+ 298 + 299 + 2100)

   = 2 (1 + 2 + 22 + 23 + 24) + 26(1 + 2 + 22 + 23 + 24) + ...+ 296(1 + 2 + 22 + 23 + 24)

  = (1 + 2 + 22 + 23 + 24) (2 + 2+ ...+ 296)

  = (1 + 2 + 4 + 8 + 16). (2 + 2+ ...+ 296)

  = 31. (2 + 2+ ...+ 296)

Dễ thấy C chia hết cho 31.

nguyễn nam dũng
Xem chi tiết
Hoshiko Terumi
Xem chi tiết
Trần Thanh Phương
18 tháng 11 2018 lúc 20:11


 

\(A=\left(2+2^2\right)+...+\left(2^{99}+2^{100}\right)\)

\(A=2\cdot\left(1+2\right)+...+2^{99}\cdot\left(1+2\right)\)

\(A=2\cdot3+...+2^{99}\cdot3\)

\(A=3\cdot\left(2+...+2^{99}\right)⋮3\left(đpcm\right)\)

2 ý kia tương tự

Nguyễn Minh Vũ
18 tháng 11 2018 lúc 20:13

Giải:

Đặt S=(2+2^2+2^3+...+2^100)

=2.(1+2+2^2+2^3+2^4)+2^6.(1+2+2^2+2^3+2^4)+...+(1+2+2^2+2^3+2^4).296

=2.31+26.31+...+296.31

=31.(2+26+...+296)\(⋮\)31

BÌNH HÒA QUANG
18 tháng 11 2018 lúc 20:16

Ta có :

\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

=> \(A=(2+2^2)+(2^3+2^4)+...+(2^{99}+2^{100})\)

=> \(A=2(1+2)+2^3(1+2)+...+2^{99}(1+2)\)

=> \(A=2.3+2^3.3+...+2^{99}.3\)

=> \(A=(2+2^3+...+2^{99}).3\)chia hết cho 3             ( 1 )

Ta lại có :

\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

=> \(A=2(1+2+2^2+2^3+...+2^{98}+2^{99})\)chia hết cho 2       ( 2 )

Từ ( 1 ) và ( 2 ) ta có :

A chia hết cho 2 . 3 hay A chia hết cho 6

Ta có :

\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

=> ​\(A=\left(2+2^2+2^3+2^4+2^5\right)+....\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

=> \(A=2\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

=> \(A=2.31+...+2^{96}.31\)

=> \(A=\left(2+...+2^{96}\right)31\)chia hết cho 31

Tung Ngo Sy
Xem chi tiết
nguyen khac hiep
21 tháng 1 2021 lúc 21:10

                                                                          lg

a)C=3+3^2+3^3+...+3^100

=(3+3^2+3^3+3^4)+...+(3^96+3^97+3^98+3^99+3^100)

=(3.1+3.3+3.3^2+3.3^3)+...+(3^96.1+3^96.3+3^96.3^2+3^96.3^3)

=3.(1+3+3^2+3^3)+...+3^96.(1+3+3^2+3^3)

=3.40+...+3^96.40

=40.(3+...+3^96) chia hết cho 40

=>C chia hết cho 40

Vậy C chia hết cho 40

phần b làm tương tự

Khách vãng lai đã xóa
nguyen khac hiep
5 tháng 2 2021 lúc 21:44

a, sai đề 

b,Ta có :

C=2+2^2+2^3+2^4+2^5...+2^96+2^97+2^98+2^99+2^100

   = (2+2^2+2^3+2^4+2^5)+...+(2^96+2^97+2^98+2^99+2^100)

  = (2.1+2.2+2.2^2+2.2^3+2.2^4)+...+(2^96.1+2^96.2+2^96.2^2+2^96.2^3+2^96.2^4)

  =2. (1+2+2^2+2^3+2^4) +...+2^96.(1+2+2^2+2^3+2^4)

  =2.31+...+2^96.31

  =31. (2+...+2^96) chia hết cho 31

=>C chia hết cho 31

Khách vãng lai đã xóa
nguyễn nam dũng
Xem chi tiết
Lê Thị Bích Tuyền
3 tháng 7 2015 lúc 17:00

a. C = 2 + 22 + 23 + …….. +  299  + 2100

= 2(1 +2 + 22+ 23+ 24) +  26(1 + 2 + 22+ 23+ 24)+…+ (1 + 2 + 22+ 23+ 24).296

 = 2 . 31 + 26 . 31 + … + 296 . 31 = 31(2 + 26 +…+296).

Vậy C chia hết cho 31

b. C = 2 + 22 + 23 + …….. +  299  + 2100 à 2C = 22 + 23 + 24 + …+ 2100 + 2101

Ta có 2C – C = 2101 – 2 \(\Rightarrow\) 2101 = 22x-1 \(\Rightarrow\)2x - 1 = 101

 2x = 102

=> x = 51

Nguyễn Bá Minh
7 tháng 1 2018 lúc 8:24

alpoj

Nguyễn Mạnh Hiển
23 tháng 10 2018 lúc 11:18

Tại sao trong ngoặc lại cộng 1 nữa vậy bạn ?