Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thanh Nguyenthi
Xem chi tiết
nam nguyennam
Xem chi tiết
Maria Ozawa
Xem chi tiết
Maria Ozawa
Xem chi tiết
svtkvtm
14 tháng 10 2019 lúc 20:05

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\Rightarrow\frac{x+y+z}{xyz}=3\Leftrightarrow x+y+z=3xyz\Rightarrow\text{điều cần c/m}\Leftrightarrow x+y+z=0\left(\text{vô lí}\right)\)

tư
Xem chi tiết
Nguyễn Đại Dương
7 tháng 3 2016 lúc 18:34

Đáp án: Tay phải.

Đúng không

tư
7 tháng 3 2016 lúc 18:38

cái j vậy ba

Hoàng Như Quỳnh
28 tháng 5 2021 lúc 8:35

\(x+y+z=1\)

\(< =>\left(x+y+z\right)^2=1^2\)

\(x^2+y^2+z^2+xy+yz+xz=1\)

\(x^2+y^2+z^2>=xy+yz+xz\)(Bất đẳng thức cô-si)

\(x^2+y^2+z^2+2\left(xy+yz+xz\right)=1\)

vì \(x^2+y^2+z^2>=xy+yz+xz\)

\(< =>x^2+y^2+z^2+2\left(x^2+y^2+z^2\right)>=1\)

\(3\left(x^2+y^2+z^2\right)>=1\)

\(< =>x^2+y^2+z^2>=\frac{1}{3}\)

DPCM

Khách vãng lai đã xóa
Đõ Phương Thảo
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 8 2020 lúc 20:10

\(\frac{x+1}{y^2+1}=\frac{\left(x+1\right)\left(y^2+1\right)-y^2\left(x+1\right)}{y^2+1}=x+1-\frac{y^2\left(x+1\right)}{y^2+1}\ge x+1-\frac{y^2\left(x+1\right)}{2y}=x+1-\frac{1}{2}\left(xy+y\right)\)

Thiết lập tương tự và cộng lại ta được:

\(VT\ge x+y+z+3-\frac{1}{2}\left(xy+yz+zx+x+y+z\right)\)

\(VT\ge6-\frac{1}{2}\left(xy+yz+zx+3\right)=\frac{9}{2}-\frac{1}{2}\left(xy+yz+zx\right)\)

\(VT\ge\frac{9}{2}-\frac{1}{6}\left(x+y+z\right)^2=\frac{9}{2}-\frac{9}{6}=3\)

Dấu "=" xảy ra khi \(x=y=z=1\)

Vinne
Xem chi tiết
Edogawa Conan
4 tháng 9 2021 lúc 10:40

Ta có: \(\dfrac{x^3}{y+2z}+\dfrac{y^3}{z+2x}+\dfrac{z^3}{x+2y}=\dfrac{x^4}{xy+2zx}+\dfrac{y^4}{yz+2xy}+\dfrac{z^4}{zx+2yz}\)

\(\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{xy+2zx+yz+2xy+zx+2yz}=\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\)

Mà ta lại có: \(xy+yz+zx\le x^2+y^2+z^2\)

 \(\Rightarrow\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(xy+yz+zx\right)}\ge\dfrac{\left(x^2+y^2+z^2\right)^2}{3\left(x^2+y^2+z^2\right)}=\dfrac{1^2}{3.1}=\dfrac{1}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=z=\dfrac{1}{\sqrt{3}}\)

Nguyễn Tùng Lâm
Xem chi tiết
Lightning Farron
19 tháng 4 2017 lúc 22:08

Câu hỏi của Thu Hà - Toán lớp 8 | Học trực tuyến

Ngáo Nu
19 tháng 4 2017 lúc 22:59

a) Áp dụng BĐT Cauchy-Schwarz ta có:

(12+12+12)(x2+y2+z2)≥(x+y+z)2(12+12+12)(x2+y2+z2)≥(x+y+z)2

⇒3(x2+y2+z2)≥(x+y+z)2⇒3(x2+y2+z2)≥(x+y+z)2

⇒3(x2+y2+z2)≥(x+y+z)2=12=1⇒3(x2+y2+z2)≥(x+y+z)2=12=1

⇒x2+y2+z2≥13⇒x2+y2+z2≥13

Đẳng thức xảy ra khi x=y=z=13x=y=z=13

b) Áp dụng BĐT Cauchy-Schwarz ta có:

(4+1)(4x2+y2)≥(4x+y)2(4+1)(4x2+y2)≥(4x+y)2

⇒5(4x2+y2)≥(4x+y)2⇒5(4x2+y2)≥(4x+y)2

⇒5(4x2+y2)≥(4x+y)2=12=1⇒5(4x2+y2)≥(4x+y)2=12=1

⇒4x2+y2≥15⇒4x2+y2≥15

Đẳng thức xảy ra khi x=y=15x=y=15

nguyen lan anh
Xem chi tiết
Akai Haruma
31 tháng 3 2018 lúc 14:02

Bài 3:

Áp dụng BĐT Cauchy cho các số dương ta có:

\(\frac{1}{x}+\frac{x}{4}\geq 2\sqrt{\frac{1}{4}}=1\)

\(\frac{1}{y}+\frac{y}{4}\geq 2\sqrt{\frac{1}{4}}=1\)

\(\frac{1}{z}+\frac{z}{4}\geq 2\sqrt{\frac{1}{4}}=1\)

Cộng theo vế các BĐT vừa thu được ta có:

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}+\frac{x+y+z}{4}\geq 3\)

\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq 3-\frac{x+y+z}{4}\geq 3-\frac{6}{4}\) (do \(x+y+z\leq 6\) )

\(\Rightarrow \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{3}{2}\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z=2\)

Bài 4:

Áp dụng BĐT Cauchy cho 3 số dương:

\(\frac{x}{y}+\frac{y}{z}+\frac{z}{x}\geq 3\sqrt[3]{\frac{x}{y}.\frac{y}{z}.\frac{z}{x}}=3\sqrt[3]{1}=3\) (đpcm)

Dấu bằng xảy ra khi \(x=y=z\)