cho a,b,c,d thoả mãn a^2+b^2+c^2+d^2=a(b+c+d).tổng a+b+c+d=
cho a,b,c,d thoả mãn a+b=c+d;a^2 + b^2=c^2 + d^2 CMR a^2013 + b^2013=c^2013 + d^2013
doan thi khanh linh copy đáp án trong câu hỏi của bạn Dương Nguyễn Ngọc Khánh
Bài làm của mình:
Có a2 + b2 = c2 + d2
\(\Rightarrow\) a2 - c2 = d2 - b2
\(\Rightarrow\)(a-c)(a+c) = (d-b)(d+b)
Mà theo đề bài a + b = c + d
\(\Rightarrow\) a - c = d - b
Nếu a = c
\(\Rightarrow\) a - c = d - b = 0
\(\Rightarrow\) d = b
\(\Rightarrow\) a2013 = c2013 và d2013 = b2013
\(\Rightarrow\) a2013 + b2013 = c2013 + d2013
Tương tự với a \(\ne\) c
a+b=c+d
=> (a+b)2=(c+d)2
=> a2+2ab+b2=c2+2cd+d2
=>2ab=2cd
=> a2-2ab+b2=c2-2cd+d2
=> (a-b)2=(c-d)2
Th1: a-b=c-d
Mà a+b=c+d
=> a-b+a+b=c+d+c-d
=> 2a=2c => a=c=> b=d=> a2013+b2013= c2013+d2013 (1)
Th2: a-b=d-c
Mà a+b=c+d
=> a+b+a-b= c+d+d-c
=>2a=2d=>a=d=>b=c=> a2013+b2013=c2013+d2013(2)
Từ (1) và (2) => đpcm
Cho a,b,c,d nguyen thoả mãn:
a+b=c+d
Chứng minh :\(a^2+b^2+c^2+d^2\)l là tổng của 3 số chính phương
cho 4 số dương thoả mãn a,b,c,d,biết a/b =c/d.a^2=b^2+c^2
chứng minh 1/d^2=1/b^2+1/c^2
cho a,b,c,d thoả mãn \(\frac{a}{b+c+d}+\frac{b}{c+d+a}+\frac{c}{d+a+b}+\frac{d}{a+b+c}=1\)
Tính \(\frac{a^2}{b+c+d}+\frac{b^2}{c+d+a}+\frac{c^2}{d+a+b}+\frac{d^2}{a+b+c}\)
ta nhân lần lượt a,b,c,d vào biểu thức ban đầu , được
\(\hept{\begin{cases}\frac{a^2}{b+c+d}+\frac{ba}{a+c+d}+\frac{ac}{a+b+d}+\frac{ad}{a+b+c}=a\left(1\right)\\\frac{ab}{b+c+d}+\frac{b^2}{a+c+d}+\frac{cb}{a+b+d}+\frac{db}{a+b+c}=b\left(2\right)\end{cases}}\)
\(\hept{\begin{cases}\frac{ac}{b+c+d}+\frac{bc}{c+a+d}+\frac{c^2}{a+b+d}+\frac{dc}{a+b+c}=c\left(3\right)\\\frac{ad}{b+c+d}+\frac{bd}{a+c+d}+\frac{cd}{a+b+d}+\frac{d^2}{a+b+c}=d\left(4\right)\end{cases}}\)
Lấy (1)+(2)+(3)+(4) ta có :
\(\left(\frac{a^2}{b+c+d}+\frac{b^2}{a+c+d}+\frac{c^2}{a+b+d}+\frac{d^2}{a+b+c}\right)+\frac{ab+bc+bd}{c+d+a}+\frac{ac+bc+cd}{d+a+b}\)
\(+\frac{ad+bd+cd}{a+b+c}+\frac{ab+ac+ad}{b+c+d}=a+b+c+d\)
\(< =>A+\frac{b\left(c+d+a\right)}{c+d+a}+\frac{d\left(a+b+c\right)}{a+b+c}+\frac{c\left(b+d+a\right)}{b+d+a}+\frac{a\left(c+b+d\right)}{c+b+d}=a+b+c+d\)
\(< =>A+a+b+c+d=a+b+c+d=>A=0\)
Vậy \(A=\frac{a^2}{b+c+d}+\frac{b^2}{a+c+d}+\frac{c^2}{a+b+d}+\frac{d^2}{a+b+c}=0\)
cho bốn số a,b,c,d thoả mãn a+b+c+d=9.vậy giá trị nhỏ nhất của a^2+b^2+c^2+d^2 là
Cho các số a,b,c,d,e thoả mãn |a-b| = 2|b-c| = 3|c-d| = 5|e-a|. Chứng minh rằng a=b=c=d=e
Cho các số nguyên dương a,b,c,d,e,g thoả mãn a2 + b2 + c2 = d2 + e2 + g2. Hỏi tổng a+b+c+d+e+g là hợp số hay số nguyên tố ?
Xét hiệu\(\left(a^2+b^2+c^2+d^2+e^2\right)-\left(a+b+c+d+e\right)=\)
Xét : \(\left(a^2+b^2+c^2+d^2+e^2+g^2\right)+\left(a+b+c+d+e+g\right)\)
\(=\left(a^2+a\right)+\left(b^2+b\right)+\left(c^2+c\right)+\left(d^2+d\right)+\left(e^2+e\right)+\left(g^2+g\right)\)
\(=a.\left(a+1\right)+b.\left(b+1\right)+c.\left(c+1\right)+d.\left(d+1\right)+e.\left(e+1\right)+g.\left(g+1\right)\)
Ta có :\(a.\left(a+1\right);b.\left(b+1\right);c.\left(c+1\right);d.\left(d+1\right);e.\left(e+1\right);g.\left(g+1\right)\) là tích của hai số nguyên dương liên tiếp .Do đó chúng chia hết cho \(2\)
\(\implies\) \(\left(a^2+b^2+c^2+d^2+e^2+g^2\right)+\left(a+b+c+d+e+g\right)\) chia hết cho \(2\)
Mà : \(a^2+b^2+c^2+d^2+e^2+g^2=2.\left(d^2+e^2+g^2\right)\) chia hết cho \(2\)
\(\implies\) \(a+b+c+d+e+g\) chia hết cho \(2\)
Mà : \(a+b+c+d+e+g\) \(\geq\) \(6\) \(\implies\) \(a+b+c+d+e+g\) là hợp số
cho các số nguyên dương a;b;c;d;e;g thoả mãn a^2+b^2+c^2=d^2+e^2+g^2. Hỏi a+b+c+d+e+g là nguyên tố hay hợp số ?
Ta có: \(a^2+b^2+c^2=d^2+e^2+g^2\Leftrightarrow a^2+b^2+c^2+d^2+e^2+g^2=2\left(a^2+b^2+c^2\right)\)
\(\Rightarrow a^2+b^2+c^2+d^2+e^2+g^2⋮2\left(1\right)\)
Lại có \(a^2-a=a\left(a-1\right)⋮2\)
Tương tự \(b^2-b,c^2-c,d^2-d,e^2-e,g^2-g⋮2\)
\(\Leftrightarrow\left(a^2+b^2+c^2+d^2+e^2+g^2\right)-\left(a+b+c+d+e+g\right)⋮2\left(2\right)\)
Từ (1) và (2) \(\Leftrightarrow a+b+c+d+e+g⋮2\)
cho các số nguyên dương a;b;c;d;e;g thoả mãn a^2+b^2+c^2=d^2+e^2+g^2. Hỏi a+b+c+d+e+g là nguyên tố hay hợp số ?