Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Le Ngân Giang
Xem chi tiết
Vũ Hoàng Xuân
Xem chi tiết
Nguyễn Hồng Nhung
Xem chi tiết
Nguyễn Hồng Nhung
20 tháng 2 2018 lúc 19:40

a)-19

b)22

nguyenthihab
Xem chi tiết
Lightning Farron
12 tháng 8 2016 lúc 20:04

Bài 1:

a)|x-2|=x-2

<=>x-2=-(x-2) hoặc (x-2)

Với x-2=-(x-2) 

=>x-2=-x+2

=>x=2

Với x-2=x-2.Ta thấy 2 vế cùng có số hạng giống nhau =>mọi \(x\in R\)đều thỏa mãn

b)|2x+3|=5x-1

=>2x+3=-(5x-1) hoặc 5x-1

Với 2x+3=-(5x-1)

​=>2x+3=-5x+1

=>x=-2/7 (loại)

Với 2x+3=5x-1

​=>x=4/3

Bài 2:

a)Ta thấy:\(\begin{cases}\left|x-2\right|\\\left|3+y\right|\end{cases}\ge0\)

\(\Rightarrow\left|x-2\right|+\left|3+y\right|\ge0\)

\(\Rightarrow A\ge0\)

Dấu = khi \(\begin{cases}\left|x-2\right|=0\\\left|3+y\right|=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=2\\y=-3\end{cases}\)

Vậy MinA=0 khi x=2; y=-3

b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) và dấu = khi \(ab\ge0\) ta có:

\(\left|x-2016\right|+\left|x-2017\right|\ge\left|x-2016+2017-x\right|=1\)

\(\Rightarrow B\ge1\)

Dấu = khi \(ab\ge0\)\(\Leftrightarrow\left(x-2016\right)\left(x-2017\right)\ge0\)\(\Leftrightarrow\begin{cases}\left(x-2016\right)\left(x-2017\right)\\2016\le x\le2017\end{cases}\)

\(\Leftrightarrow\begin{cases}x=2016\\x=2017\end{cases}\)

Vậy MinB=1 khi x=2016 hoặc 2017

 

 

Lightning Farron
12 tháng 8 2016 lúc 19:53

lần sau đăng ít thôi 

Nguyễn Phương HÀ
12 tháng 8 2016 lúc 19:57

1 tim x,biết:

a,lx-2l=x-2

<=>\(\left[\begin{array}{nghiempt}x-2=x-2\\x-2=2-x\end{array}\right.\)

<=> \(\left[\begin{array}{nghiempt}x\in R\\x=2\end{array}\right.\)

=> \(x\in R\)

 b.l2x+3l=5x-1

<=> \(\left[\begin{array}{nghiempt}2x+3=5x-1\\2x+3=1-5x\end{array}\right.\)

<=>\(\left[\begin{array}{nghiempt}x=\frac{4}{3}\\x=-\frac{2}{7}\end{array}\right.\)

2 tìm giá trị nhỏ nhất của biểu thức:

A=lx-2l+l3+yl

ta có \(\left|x-2\right|\ge0\)

\(\left|3+y\right|\ge0\)

=> |x-2|+|y+3|\(\ge0\)

dấu = xảy ra khi x=2 và y=-3

=> Min A=0 khi x=2 và y=-3

B=lx-2016l+lx-2017l

ta có: 

B=lx-2016l+lx-2017l\(\ge\)|x-2016-x+2017|=1

 dấu = xảy ra khi (x-2016)(-x+2017)>=0

<=> \(2016\le x\le2017\)

Min B=1 khi 2016\(\le x\le\)2017

nguyễn văn an
Xem chi tiết
Đỗ Linh
Xem chi tiết
Hà Thị Quỳnh
8 tháng 5 2016 lúc 20:54

Ta có \(\left|x-2002\right|+\left|x-2001\right|=\left|2002-x\right|+\left|x-2001\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|\text{b }\right|\ge\left|a+b\right|\) dấu đẳng thức xảy ra khi \(ab\ge0\)

Khi đó ta có \(\left|2002-x\right|+\left|x-2001\right|\ge\left|x-2001+2002-x\right|=\left|1\right|=1\)

Vậy min của biểu thức trên bằng 1 khi \(\left(x-2001\right)\left(2002-x\right)\ge0\) tức là \(2001\le x\le2002\)

Le Tu Nhan
Xem chi tiết
bui huong mo
Xem chi tiết
Nguyễn Thiên Phúc
23 tháng 5 2021 lúc 15:51

2450 nhé

Khách vãng lai đã xóa
Nguyễn Gia Bảo
23 tháng 5 2021 lúc 15:55

còn cái nịtッ

Khách vãng lai đã xóa
bui huong mo
23 tháng 5 2021 lúc 15:57

bạn nói cách giải hộ mk với

Khách vãng lai đã xóa
LF 2 Super
Xem chi tiết
vũ tiền châu
10 tháng 9 2017 lúc 22:07

ta có \(P=\left|x+3\right|+\left|x-2\right|+\left|x-5\right|=\left|x+3\right|+\left|5-x\right|+\left|x-2\right|\)

Áp dụng tính chât dấu giá trị tuyệt đối ta có 

\(\left|x+3\right|+\left|5-x\right|\ge\left|x+3+5-x\right|=8\)

mà \(\left|x-2\right|\ge0\)

\(\Rightarrow P\ge8\)

dấu = xảy ra <=>\(\hept{\begin{cases}\left(x+3\right)\left(5-x\right)\ge0\\x-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x+3\right)\left(x-5\right)\ge0\\x=2\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}5\ge x\ge-3\\x=2\end{cases}}\)

<=> x=2

vậy Pmin =8 <=> x=2