Tìm giá trị lớn nhất của biểu thức:
A= lx-2018l-lx-2017l
Tìm giá trị nhỏ nhất A của biết: A = lx-1l + lx-80l + lx-2018l
(Giải đầy đủ nha)
Tìm giá trị nhỏ nhất:
B=lx-1l+2ly+2017l-2010
C=lx-2l+lx-2009l+10
a)Tìm giá trị nhỏ nhất của biểu thức:A=lx-11l+l8-yl-19 với x,y cZ
b)Tìm giá trị lớn nhất của biểu thức:A=-(x-9)2+22 với x c Z
1 tim x,biết:
a,lx-2l=x-2
b.l2x+3l=5x-1
2 tìm giá trị nhỏ nhất của biểu thức:
A=lx-2l+l3+yl
B=lx-2016l+lx-2017l
gúp mk với
lưu bý nhỏ nhé mk ko biết làm thế nào để có dấu giá trị tuyệt đối nên mk đã lấy chữ l (lờ) thay dấu giá trị tuyệt đối đó thông cảm cho mk nhé.
Bài 1:
a)|x-2|=x-2
<=>x-2=-(x-2) hoặc (x-2)
Với x-2=-(x-2) =>x-2=-x+2
=>x=2
Với x-2=x-2.Ta thấy 2 vế cùng có số hạng giống nhau =>mọi \(x\in R\)đều thỏa mãnb)|2x+3|=5x-1
=>2x+3=-(5x-1) hoặc 5x-1
Với 2x+3=-(5x-1)=>2x+3=-5x+1
=>x=-2/7 (loại)
Với 2x+3=5x-1=>x=4/3
Bài 2:
a)Ta thấy:\(\begin{cases}\left|x-2\right|\\\left|3+y\right|\end{cases}\ge0\)
\(\Rightarrow\left|x-2\right|+\left|3+y\right|\ge0\)
\(\Rightarrow A\ge0\)
Dấu = khi \(\begin{cases}\left|x-2\right|=0\\\left|3+y\right|=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=2\\y=-3\end{cases}\)
Vậy MinA=0 khi x=2; y=-3
b)Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) và dấu = khi \(ab\ge0\) ta có:
\(\left|x-2016\right|+\left|x-2017\right|\ge\left|x-2016+2017-x\right|=1\)
\(\Rightarrow B\ge1\)
Dấu = khi \(ab\ge0\)\(\Leftrightarrow\left(x-2016\right)\left(x-2017\right)\ge0\)\(\Leftrightarrow\begin{cases}\left(x-2016\right)\left(x-2017\right)\\2016\le x\le2017\end{cases}\)
\(\Leftrightarrow\begin{cases}x=2016\\x=2017\end{cases}\)
Vậy MinB=1 khi x=2016 hoặc 2017
1 tim x,biết:
a,lx-2l=x-2
<=>\(\left[\begin{array}{nghiempt}x-2=x-2\\x-2=2-x\end{array}\right.\)
<=> \(\left[\begin{array}{nghiempt}x\in R\\x=2\end{array}\right.\)
=> \(x\in R\)
b.l2x+3l=5x-1
<=> \(\left[\begin{array}{nghiempt}2x+3=5x-1\\2x+3=1-5x\end{array}\right.\)
<=>\(\left[\begin{array}{nghiempt}x=\frac{4}{3}\\x=-\frac{2}{7}\end{array}\right.\)
2 tìm giá trị nhỏ nhất của biểu thức:
A=lx-2l+l3+yl
ta có \(\left|x-2\right|\ge0\)
\(\left|3+y\right|\ge0\)
=> |x-2|+|y+3|\(\ge0\)
dấu = xảy ra khi x=2 và y=-3
=> Min A=0 khi x=2 và y=-3
B=lx-2016l+lx-2017l
ta có:
B=lx-2016l+lx-2017l\(\ge\)|x-2016-x+2017|=1
dấu = xảy ra khi (x-2016)(-x+2017)>=0
<=> \(2016\le x\le2017\)
Min B=1 khi 2016\(\le x\le\)2017
tìm giá trị lớn nhất và nhỏ nhất của biểu thức sau
A=(-24)+lx-4l
B=10-lx+9l
Tìm giá trị lớn nhất hoặc nhỏ nhất của biểu thức
lx-2002l+lx-2001l
Chú ý : l l là dấu giá trị tuyệt đối nhé
Ta có \(\left|x-2002\right|+\left|x-2001\right|=\left|2002-x\right|+\left|x-2001\right|\)
Áp dụng bất đẳng thức \(\left|a\right|+\left|\text{b }\right|\ge\left|a+b\right|\) dấu đẳng thức xảy ra khi \(ab\ge0\)
Khi đó ta có \(\left|2002-x\right|+\left|x-2001\right|\ge\left|x-2001+2002-x\right|=\left|1\right|=1\)
Vậy min của biểu thức trên bằng 1 khi \(\left(x-2001\right)\left(2002-x\right)\ge0\) tức là \(2001\le x\le2002\)
tìm giá trị lớn nhất, nhỏ nhất của biểu thức sau
A=lx-5l-lx-7l
trả lời đúng tao tick
Tìm giá trị nhỏ nhất của biểu thức lx - 1l + lx - 2l + lx -3l + ... + lx - 100l.
bạn nói cách giải hộ mk với
Tìm giá trị nhỏ nhất của biểu thức:P=lx+3l+lx-2l+lx-5l
ta có \(P=\left|x+3\right|+\left|x-2\right|+\left|x-5\right|=\left|x+3\right|+\left|5-x\right|+\left|x-2\right|\)
Áp dụng tính chât dấu giá trị tuyệt đối ta có
\(\left|x+3\right|+\left|5-x\right|\ge\left|x+3+5-x\right|=8\)
mà \(\left|x-2\right|\ge0\)
\(\Rightarrow P\ge8\)
dấu = xảy ra <=>\(\hept{\begin{cases}\left(x+3\right)\left(5-x\right)\ge0\\x-2=0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(x+3\right)\left(x-5\right)\ge0\\x=2\end{cases}}}\)
\(\Leftrightarrow\hept{\begin{cases}5\ge x\ge-3\\x=2\end{cases}}\)
<=> x=2
vậy Pmin =8 <=> x=2