so sánh 10*A vói 10*B từ đó so sánh A và B
Bài 4: a. Tìm khoảng 10 phép so sánh trong thành ngữ và nhận xét về cấu tạo của những phép so sánh ấy.
b. Tìm khoảng 10 phép so sánh trong ca dao và thơ trong đó vắng từ ngữ chỉ phương diện so sánh. Việc lược bớt từ ngữ chỉ phương diện so sánh ấy có tác dụng gì?
a.cho a,b,n thuộc N*.hãy so sánh a+n/b+n và a/b
B.Cho A=10^11-1/10^12-1; B=10^10/10^11.So sánh A và B.
a, Cho a,b,n ϵ N* . Hãy so sánh \(\dfrac{a+n}{b+n}và\dfrac{a}{b}\)
b, Cho A= \(\dfrac{10^{11}-1}{10^{12}-1};B=\dfrac{10^{10}+1}{10^{11}+1}.\) So sánh A và B
Lời giải:
a) Xét hiệu \(\frac{a+n}{b+n}-\frac{a}{b}=\frac{(a+n).b-a(b+n)}{b(b+n)}=\frac{n(b-a)}{b(b+n)}\)
Nếu $b>a$ thì $\frac{a+n}{b+n}-\frac{a}{b}>0\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$
Nếu $b<a$ thì $\frac{a+n}{b+n}-\frac{a}{b}<0\Rightarrow \frac{a+n}{b+n}<\frac{a}{b}$
Nếu $b=a$ thì $\frac{a+n}{b+n}-\frac{a}{b}=0\Rightarrow \frac{a+n}{b+n}=\frac{a}{b}$
b) Rõ ràng $10^{11}-1< 10^{12}-1$.
Đặt $10^{11}-1=a; 10^{12}-1=b; 11=n$ thì: $a< b$; $A=\frac{a}{b}$ và $B=\frac{10^{11}+10}{10^{12}+10}=\frac{a+n}{b+n}$
Áp dụng kết quả phần a:
$b>a\Rightarrow \frac{a+n}{b+n}>\frac{a}{b}$ hay $B>A$
so sánh A và B trong đó A = 10 mũ 17 + 3 / 10 mũ 17 + 1 B = 10 mũ 18 + 1 / 10 mũ 18 -1
\(A=\dfrac{10^{17}+3}{10^{17}+1}=1+\dfrac{2}{10^{17}+1}\\ B=\dfrac{10^{18}+1}{10^{18}-1}=1+\dfrac{2}{10^{18}-1}=1+\dfrac{2}{10^{17}+1+\left(9\cdot10^{17}-2\right)}\)
Ta có : \(9\cdot10^{17}-2>0\Rightarrow10^{17}+1+\left(9\cdot10^{17}-2\right)>10^{17}+1\\ \Rightarrow\dfrac{2}{10^{17}+1}>\dfrac{2}{10^{18}-1}\Rightarrow A>B\)
Cho \(A=\frac{10^{11}-1}{10^{12}-1};B=\frac{10^{10}+1}{10^{11}+1}\)
So sánh A và B
( xét A và B so sánh với 1 nhé)
Có : 10A = 10.(10^11-1)/10^12-1 = 10^12-10/10^12-1
Vì : 0 < 10^12-10 < 10^12-1 => 10A < 1 (1)
10B = 10.(10^10+1)/10^11+1 = 10^11+10/10^11+1
Vì : 10^11+10 > 10^11+1 > 0 => 10B > 1 (2)
Từ (1) và (2) => 10A < 10B
=> A < B
Tk mk nha
\(A=\frac{10^{11}-1}{10^{12}-1}\)
\(B=\frac{10^{10}+1}{10^{11}+1}\)
Mà \(\frac{10^{11}-1}{10^{12}-1}< 1\); \(\frac{10^{10}+1}{10^{11}+1}< 1\)
\(\Rightarrow\)\(A,B< 1\)
Ta có:
\(10^{11}-1>10^{10}+1\); \(10^{12}-1>10^{11}+1\)
\(\Rightarrow A>B\)
Vậy A > B
Có : 10A = 10^12-10/10^12-1 = 1 - 9/10^12-1 < 1
10B = 10^11+10/10^11+1 = 1 + 9/10^11+1 > 1
=> 10A < 10B
=> A < B
Tk mk nha
Cho A = \(\dfrac{n^9+1}{n^{10}+1}\) và B = \(\dfrac{n^8+1}{n^9+1}\) trong đó n\(\in\)N; n>1. Hãy so sánh nghịch đảo của A và B rồi so sánh A với B
A = \(\dfrac{n^9+1}{n^{10}+1}\)
\(\dfrac{1}{A}\) = \(\dfrac{n^{10}+1}{n^9+1}\) = n - \(\dfrac{n-1}{n^9+1}\)
B = \(\dfrac{n^8+1}{n^9+1}\)
\(\dfrac{1}{B}\) = \(\dfrac{n^9+1}{n^8+1}\) = n - \(\dfrac{n-1}{n^8+1}\)
Vì n > 1 ⇒ n - 1> 0
\(\dfrac{n-1}{n^9+1}\) < \(\dfrac{n-1}{n^8+1}\)
⇒ n - \(\dfrac{n-1}{n^9+1}\) > n - \(\dfrac{n-1}{n^8+1}\)⇒ \(\dfrac{1}{A}>\dfrac{1}{B}\)
⇒ A < B
a,Cho a,b,n thuộc N*.Hãy so sánh a+n/b+n và a/b
b,Cho A = 10^11-1/10^12-1
B = 10^10+1/10^11+1
so sánh A và B
a. cho a,b,n là các số tự nhiên Hãy so sánh \(\frac{a+n}{b+n}\)và \(\frac{a}{b}\)
b.Hãy so sánh A= \(\frac{10^{11}-1}{10^{12}-1}\);B= \(\frac{10^{10}+1}{10^{11}+1}\)so sánh A và B
a. Cho a,b,n thuộc N* . Hãy so sánh a+n/b+n và a/b
b.Cho A=1011 -1/1012 -1;B=1010 +1/1011 +1. So sánh A và B.