Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Phan Thục Trinh
Xem chi tiết
Girl
11 tháng 7 2019 lúc 1:08

1)Áp dụng bđt AM-GM:

\(2\left(ab+\frac{a}{b}+\frac{b}{a}\right)=\left(ab+\frac{a}{b}\right)+\left(ab+\frac{b}{a}\right)+\left(\frac{a}{b}+\frac{b}{a}\right)\ge2\left(a+b+1\right)\)

\(\Leftrightarrow ab+\frac{a}{b}+\frac{b}{a}\ge a+b+1."="\Leftrightarrow a=b=1\)

2) Áp dụng bđt AM-GM ta có: \(a+\frac{1}{a-1}=a-1+1+\frac{1}{a-1}\ge2\sqrt{\left(a-1\right).\frac{1}{a-1}}+1=3\)

\("="\Leftrightarrow a=2\)

3) Áp dụng bđt AM-GM:

\(2\left(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\right)=\left(\frac{ab}{c}+\frac{bc}{a}\right)+\left(\frac{ac}{b}+\frac{ab}{c}\right)+\left(\frac{bc}{a}+\frac{ac}{b}\right)\ge2\left(a+b+c\right)\)

Cộng theo vế và rg => ddpcm. Dấu bằng khi a=b=c

Lê Thị Mai
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 9 2020 lúc 10:25

\(VT=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)

\(VT\ge\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}=\left(\frac{1}{a+b}+\frac{1}{b+c}\right)+\left(\frac{1}{b+c}+\frac{1}{c+a}\right)+\left(\frac{1}{a+b}+\frac{1}{c+a}\right)\)

\(VT\ge\frac{4}{a+2b+c}+\frac{4}{a+b+2c}+\frac{4}{2a+b+c}\)

Dấu "=" xảy ra khi \(a=b=c\)

cao mạnh lợi
Xem chi tiết
Lê Anh Duy
24 tháng 4 2019 lúc 12:20

BĐT svac

\(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\forall a,b>0\)

Nguyễn Duy Long
Xem chi tiết
LIVERPOOL
27 tháng 8 2017 lúc 9:45

bài 1

<=> \(\frac{bc}{a\left(a+b+c\right)+bc}\)

sử dụng tiếp cauchy sharws

Bài 2: đặt a=x/y, b=y/x, c=z/x

Nguyễn Mai Phương
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 5 2020 lúc 14:56

a/ \(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)

Dấu "=" xảy ra khi \(x=y\)

b/Đặt biểu thức vế trái là Q

\(\frac{1}{a+b+1+3}\le\frac{1}{4}\left(\frac{1}{a+b+1}+\frac{1}{3}\right)=\frac{1}{4}\left(\frac{1}{a+b+1}\right)+\frac{1}{12}\)

Thiết lập tương tự và cộng lại:

\(Q\le\frac{1}{4}\left(\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\right)+\frac{1}{4}\)

Xét \(P=\frac{1}{a+b+1}+\frac{1}{b+c+1}+\frac{1}{c+a+1}\)

Đặt \(\left(a;b;c\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)

\(\Rightarrow P=\frac{1}{x^3+y^3+1}+\frac{1}{y^3+z^3+1}+\frac{1}{z^3+x^3+1}\le\frac{1}{xy\left(x+y\right)+1}+\frac{1}{yz\left(y+z\right)+1}+\frac{1}{zx\left(z+x\right)+1}\)

\(P\le\frac{xyz}{xy\left(x+y\right)+xyz}+\frac{xyz}{yz\left(y+z\right)+xyz}+\frac{xyz}{zx\left(z+x\right)+xyz}\)

\(P\le\frac{z}{x+y+z}+\frac{x}{x+y+z}+\frac{y}{x+y+z}=1\)

\(\Rightarrow Q\le\frac{1}{4}.1+\frac{1}{4}=\frac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=1\)

HAI PHAN
Xem chi tiết
Mr Lazy
3 tháng 10 2015 lúc 21:33

Đây là một bài dùng bất đẳng thức Côsi dạng ngược dấu khá cơ bản. Có thể search GG để tìm cách giải bài này.

Darth Vader
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 3 2019 lúc 22:58

a/ Biến đổi tương đương:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow\left(a-b\right)^2\ge0\) (luôn đúng)

Vậy BĐT được chứng minh

b/ \(VT=\frac{a-d}{b+d}+1+\frac{d-b}{b+c}+1+\frac{b-c}{a+c}+1+\frac{c-a}{a+d}+1-4\)

\(VT=\frac{a+b}{b+d}+\frac{c+d}{b+c}+\frac{a+b}{a+c}+\frac{c+d}{a+d}-4\)

\(VT=\left(a+b\right)\left(\frac{1}{b+d}+\frac{1}{a+c}\right)+\left(c+d\right)\left(\frac{1}{b+c}+\frac{1}{a+d}\right)-4\)

\(\Rightarrow VT\ge\left(a+b\right).\frac{4}{b+d+a+c}+\left(c+d\right).\frac{4}{b+c+a+d}-4\)

\(\Rightarrow VT\ge\frac{4}{\left(a+b+c+d\right)}\left(a+b+c+d\right)-4=4-4=0\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c=d\)

Edogawa Conan
Xem chi tiết
Trần Thanh Phương
13 tháng 10 2018 lúc 14:36

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

\(\frac{b}{ab}+\frac{a}{ab}\ge\frac{4}{a+b}\)

\(\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)\left(a+b\right)\ge4ab\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\left(đpcm\right)\)

Dương Lam Hàng
13 tháng 10 2018 lúc 14:39

\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) \(\left(ĐK:a>0;b>0\right)\)

\(\Leftrightarrow\frac{a+b}{ab}\ge\frac{4}{a+b}\)

\(\Leftrightarrow\left(a+b\right)\left(a+b\right)\ge4ab\)

\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2\ge4ab\)

\(\Leftrightarrow a^2+2ab+b^2-4ab\ge0\)

\(\Leftrightarrow a^2-2ab+b^2\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\ge0\) (BĐT luôn đúng)

Vậy \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)

kudo shinichi
13 tháng 10 2018 lúc 17:54

Áp dụng BĐT Cauchy-schwarz ta có:

\(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{2^2}{a+b}=\frac{4}{a+b}\)

                                                  đpcm

Tham khảo nhé~

Nguyễn Phương Oanh
Xem chi tiết
tthnew
10 tháng 7 2019 lúc 10:17

Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)

Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)

Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)

Bài 2: Thêm đk a,b,c >0.

Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.

Bài 3: Nó sao sao ấy ta?