\(\left\{{}\begin{matrix}2x+by=-4\\bx-ay=-5\end{matrix}\right.\)
Giải hpt biết a=|b|
Giải HPT:
`{(ax+by=c),(bx+ay=c),(cx+ay=b):}`
Cho hệ phương trình : (I):\(\left\{{}\begin{matrix}2x+ay=b\\ax-by=1\end{matrix}\right.\) a) Tìm a,b để hpt (I) có nghiệm (x;y)=(1;-3) b)Tìm a,b để hpt có vô số nghiệm
a, \(\left(I\right):\left\{{}\begin{matrix}2x+ay=b\\ax-by=1\end{matrix}\right.\)
Thay (x;y)=(1;-3) vào hpt có :
\(\left\{{}\begin{matrix}2-3a=b\\a+3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+b=2\\a+3b=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}9a+3b=6\\a+3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}8a=5\\a+3b=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5}{8}\\\dfrac{5}{8}+3b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{5}{8}\\b=\dfrac{1}{8}\end{matrix}\right.\)
Vậy a=5/8 , b=1/8
cho hpt mx+y=5 và 2x-y=-2.
a) giải hpt với m=5
b) Xác định giá trị của m để hpt có nghiệm duy nhất và thỏa mãn 2x+3y=12
1) Cho hệ phương trình:
{mx+y=52x−y=−2(I){mx+y=52x−y=−2(I)
a) Với m=1 ta có hệ phương trình:
{x+y=52x−y=−2{x+y=52x−y=−2
Cộng vế với vế ta được:
3x=3⇔x=1⇒y=2x+2=43x=3⇔x=1⇒y=2x+2=4
Vậy với m=11m=11 thì hệ phương trình (I) có nghiệm x=1 và y=4
b) Nghiệm (x0,y0)(x0,y0) của (I) thỏa mãn x0+y0=1x0+y0=1
nên ta có hệ phương trình:
⎧⎪⎨⎪⎩x+y=1(1)mx+y=5(2)2x−y=−2(3){x+y=1(1)mx+y=5(2)2x−y=−2(3)
Lấy (1) + (3) ta được: 3x=−1⇒x=−13⇒y=1−x=433x=−1⇒x=−13⇒y=1−x=43
Thay vào (2) suy ra m=5−yx=−11m=5−yx=−11
Vậy với m=−11m=−11 thì nghiệm của hệ phương trình (I) có tổng là 1.
2) Từ x+my=2⇒x=2−myx+my=2⇒x=2−my
Thay vào phương trình mx−2y=1mx−2y=1 ta được:
m(2−my)−2y=1⇒y=2m−1m2+2m(2−my)−2y=1⇒y=2m−1m2+2
⇒x=2−m2m−1m2+2⇒x=2−m2m−1m2+2
x=m+4m2+2x=m+4m2+2
Do m2+2>0m2+2>0 ∀m∀m
⇒x>0⇒m+4>0⇒m>−4⇒x>0⇒m+4>0⇒m>−4 và y<0⇒2m−1<0⇒m<12y<0⇒2m−1<0⇒m<12
Vậy với −4<m<12−4<m<12 thì phương trình có nghiệm duy nhất mà x>0,y<0
I don't know how to do this
chp hpt : 2x + ay =-4 và ax-3y =5 . Tìm a để hpt chỉ có duy nhất 1 nghiệm
cho hpt \(\hept{\begin{cases}\text{ax}+y=1\\2x-ay=3\end{cases}}\)
a. cmr với mọi a hệ có nghiệm duy nhất
b. tìm các giá trị của a để hpt có nghiệm duy nhất (x;y) thoả mãn x>0, y>0
cho hpt \(\hept{\begin{cases}ax+y=1\\2x-ay=3\end{cases}}\)
a. cmr với mọi a hệ có nghiệm duy nhất
b. tìm các giá trị của a để hpt có nghiệm duy nhất (x;y) thoả mãn x>0, y>0
Xác định a,b để hpt\(\left\{{}\begin{matrix}2x+ay=b+4\\ax+by=8+9a\end{matrix}\right.\)có nghiệm là x=3;y=1
thay x=3; y=1 vào hệ phương trình ta có:
\(\left\{{}\begin{matrix}2x+ay=b+4\\ax+by=8+9a\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}6+a=b+4\\3a+b=8+9a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b-a=2\\b-6a=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5a=-6\\b-a=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-\frac{6}{5}\\b=\frac{4}{5}\end{matrix}\right.\)
vậy a=-6/5; b=4/5 thì hệ phương trình có nghiệm x=3;y=1
Bài 3: Cho hệ phương trình \(\left\{{}\begin{matrix}ax-y=2\\x+ay=3\end{matrix}\right.\) (a là tham số)
1, Giair hpt với a = 1
2, Gỉai hpt với a = \(\sqrt{3}\)
3, Tìm a để hpt có nghiệm (x;y) thỏa mãn x + y < 0
Bài 4: Cho hpt \(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\) (m là tham số)
1, Giair và biện luận hpt
2, CMR: Khi hpt có nghiệm (x;y) duy nhất thì M(x;y) luôn thuộc một đường thẳng cố định
Bài 5: Cho hpt \(\left\{{}\begin{matrix}mx-ny=5\\2x+y=n\end{matrix}\right.\) (m,n là các tham số)
2, Tìm m và n để hệ đã cho có nghiệm x = \(-\sqrt{3}\), y = \(\sqrt{4+2\sqrt{3}}\)
Bài 6: Cho hpt \(\left\{{}\begin{matrix}x+y=3m-2\\2x-y=5\end{matrix}\right.\) (m là tham số)
Tìm m để hpt có nghiệm (x;y) sao cho \(\dfrac{x^2-y-5}{y+1}=4\)
Bài 7: Cho hpt \(\left\{{}\begin{matrix}2x+3y=m+1\\x+2y=2m-8\end{matrix}\right.\) (m là tham số)
2, Tìm m để hệ có nghiệm (x;y) thỏa mãn x=3y
3, Tìm các giá trị của m để hệ có nghiệm (x;y) thỏa mãn x.y>0
Bài 9: Cho hpt \(\left\{{}\begin{matrix}2y-x=m+1\\2x-y=m-2\end{matrix}\right.\) (I) (m là tham số)
2, Tính giá trị của m để hpt (I) có nghiệm (x;y) sao cho biểu thức P = \(x^2+y^2\) đạt GTNN
Bài 10: Cho hpt \(\left\{{}\begin{matrix}\left(a+1\right)x-ay=5\\x+ay=a^2+4a\end{matrix}\right.\)
Tìm a nguyên để hệ có nghiệm duy nhất (x;y) với x,y nguyên
Câu nào biết thì mink làm, thông cảm !
Bài 1:
1) Cho \(a=1\) ta được:
\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}2x=5\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\\frac{5}{2}+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{1}{2}\end{cases}}\)
2) Cho \(a=\sqrt{3}\) ta được:
\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x\sqrt{3}-y=2\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}3x-y\sqrt{3}=2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}4x=3+2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\\frac{3+2\sqrt{3}}{4}+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\y=\frac{-2+3\sqrt{3}}{4}\end{cases}}\)
Bữa sau làm tiếp