Giải các bpt sau:
Giải các bpt sau:
Giải các pt, bpt sau:
\(\dfrac{x+1}{x+2}-\dfrac{5}{x-2}=\dfrac{20}{4-x^2}\) (\(ĐK:x\)≠\(2;-2\))
⇔ \(\dfrac{\left(x+1\right)\left(x-2\right)-5\left(x+2\right)}{x^2-4}=\dfrac{20}{4-x^2}\)
⇔ \(-\left(x+1\right)\left(x-2\right)+5\left(x+2\right)=20\)
⇔ \(-\left(x^2-2x+x-2\right)+5x+10=20\)
⇔ \(-x^2+x+2+5x+10-20=0\)
⇔ \(-x^2+6x-8=0\)
⇔ \(-\left(x^2-6x+9\right)=-1\)
⇔ \(\left(x-3\right)^2=1\)
⇔ \(\left[{}\begin{matrix}x-3=1\\x-3=-1\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
Vậy ...
b: \(\Leftrightarrow20-5\left(3x+2\right)>4\left(x+7\right)\)
=>20-15x-10>4x+28
=>-15x+10-4x-28>0
=>-19x-18>0
=>-19x>18
hay x<-18/19
Giải các bpt sau
\(x^2+3x\ge2+\sqrt{5x^2+15x+14}\)
Đặt \(x^2+3x=a\left(a>=-\dfrac{9}{4}\right)\)
BPT sẽ trở thành \(a>=2+\sqrt{5a+14}\)
=>\(a-2>=\sqrt{5a+14}\)
=>\(\sqrt{5a+14}< =a-2\)
=>\(\left\{{}\begin{matrix}a-2>=0\\5a+14< =\left(a-2\right)^2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a>=2\\5a+14-a^2+4a-4< =0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a>=2\\-a^2+9a+10< =0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a>=2\\a^2-9a-10>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a>=2\\\left(a-10\right)\left(a+1\right)>=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}a>=2\\\left[{}\begin{matrix}a>=10\\a< =-1\end{matrix}\right.\end{matrix}\right.\)
=>a>=10
=>\(x^2+3x>=10\)
=>\(x^2+3x-10>=0\)
=>(x+5)(x-2)>=0
=>\(\left[{}\begin{matrix}x>=2\\x< =-5\end{matrix}\right.\)
Bài 1 : Giải các pt sau :
c) |2x - 1| = x + 2
Bài 2 : giải các BPT sau :
a) 2( 3x - 1 ) < x + 4
b) 5 -2x/3 + x ≥ x/2 + 1
Bài 1:
c) |2x - 1| = x + 2
<=> 2x - 1 = +(x + 2) hoặc -(x + 2)
* 2x - 1 = x + 2
<=> 2x - x = 2 + 1
<=> x = 3
* 2x - 1 = -(x + 2)
<=> 2x - 1 = x - 2
<=> 2x - x = -2 + 1
<=> x = -1
Vậy.....
b) (x+2)2-(5+x)2 < hoặc = -2(4x+5)
=>x^2+4x+4-x^2-10x-25<=-8x-10
=>-6x-21<=-8x-10
=>2x<=11
=>x<=11/2
1.giải các bpt sau
a.\(\left(x-3\right)\left(x+3\right)\ge x^2-7x+1\)
b.\(\dfrac{1,5-x}{5}\ge\dfrac{4x+5}{2}\)
2.giải các pt sau
\(x^3+1=x.\left(x+1\right)\)
Giải bpt sau:
-1/(x-2)≥0
Ta có: \(-\dfrac{1}{x-2}\ge0\)
nên x-2<0
hay x<2
\(-\dfrac{1}{x-2}\ge0\Leftrightarrow x-2\le0\Leftrightarrow x\le2\)
Mà : $x ≠ 2 $
Do đó, bất phương trình vô nghiệm
\(\dfrac{-1}{x-2}\ge0\)
ĐKXĐ: \(x-2\ne0\Leftrightarrow x\ne2\)
\(\Leftrightarrow-1\left(x-2\right)\ge0\)
\(\Leftrightarrow x-2\le0\)
\(\Leftrightarrow x\le2\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(không-thõa-mãn-ĐKXĐ\right)\\x< 2\left(thỏa-mãn-ĐKXĐ\right)\end{matrix}\right.\)
Vậy \(S=\left\{x|x< 2\right\}\)
Giải BPT sau
-x+5 > 9-2x
\(\Leftrightarrow-x+2x>9-5\)
\(\Leftrightarrow x>4\)
`-x+5 > 9-2x`
`<=>-x+2x > 9-5`
`<=>x > 4`
Vậy `S={x|x > 4}`
-x+5 > 9-2x
\(\Leftrightarrow-x+5-9+2x>0\)
\(\Leftrightarrow x-4>0\Leftrightarrow x>4\)
Giải bpt sau: x(x-1) > 0
\(x\left(x-1\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x-1>0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x-1< 0\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}x>1\\x< 0\end{matrix}\right.\)