Dạ mọi người giúp em với ạ. Em cảm ơn ạ
chứng minh rằng nếu phương trình ax2 + bxy + cy2 = 0 (x; y là ẩn) chỉ có một nghiệm duy nhất thì b2 - 4ac < 0
Viết chương trình: Tìm nghiệm x của phương trình ax2 + bx + c = 0 với a, b, c nhập từ bàn phím (các trường hợp 2 nghiệm, nghiệm kép, vô nghiệm)
--------------------------
Mọi người giúp em với ạ, em cảm ơn
import math
a = float(input("Nhập a: "))
b = float(input("Nhập b: "))
c = float(input("Nhập c: "))
d = b**2 - 4*a*c
if d > 0:
x1 = (-b + math.sqrt(d)) / (2*a)
x2 = (-b - math.sqrt(d)) / (2*a)
print("Phương trình có hai nghiệm: x1 =", x1, "và x2 =", x2)
elif d == 0:
x = -b / (2*a)
print("Phương trình có nghiệm kép: x =", x)
else:
print("Phương trình không có nghiệm thực."
Dạ mọi người giúp em bài 4 câu b với ạ Dạ em cảm ơn ạ
\(a^3+b^3=\sqrt{\left(\sqrt{6}-\sqrt{2}\right)^2}-\dfrac{4\left(\sqrt{6}-\sqrt{2}\right)}{\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{6}-\sqrt{2}\right)}\)
\(=\sqrt{6}-\sqrt{2}-\dfrac{4\left(\sqrt{6}-\sqrt{2}\right)}{4}=0\)
\(\Rightarrow a=-b\Rightarrow a^5+b^5=0\)
Dạ mọi người giúp em với ạ em cảm ơn!
a: Xét (O) có
ΔANB nội tiếp
AB là đường kính
=>ΔANB vuông tại N
Xét tứ giác HMNB có
góc MHB+góc MNB=180 độ
=>HMNB là tư giác nội tiếp
b: Xét ΔMDN và ΔMAC có
góc MDN=góc MAC
góc DMN=góc AMC
=>ΔMDN đồng dạng với ΔMAC
=>MD/MA=MN/MC
=>MD*MC=MA*MN
mọi người ơi giải giúp em phương trình này với ạ
3x(2-x)-5 = 1-(3x ngũ 2 + 2)
giải chi tiết giúp em với ạ cảm ơn mọi người nhiều ạ
3x(2-x)-5=1-(3x2+2)
<=>6x-3x2-5=-3x2-2
<=>6x=3
<=>x=1/2
Xác định các giá trị của m để phương trình x^2 -x+1-m =0 có hai nghiệm x1;x2 thỏa mãn đẳng thức \(5.\left(\dfrac{1}{x1}+\dfrac{1}{x2}\right)-x1.x2+4=0\)
Mọi người ơi, giúp em bài này với ạ, em cần rất gấp ạ, em cảm ơn rất nhiều ạ. (Nếu có thể giải chí tiết phần thay S và P vào đẳng thức được không ạ? Em cảm ơn rất nhiều ạ.)
\(x^2-x+1-m=0\left(1\right)\\ \text{PT có 2 nghiệm }x_1,x_2\\ \Leftrightarrow\Delta=1-4\left(1-m\right)\ge0\\ \Leftrightarrow4m-3\ge0\Leftrightarrow m\ge\dfrac{3}{4}\\ \text{Vi-ét: }\left\{{}\begin{matrix}x_1+x_2=1\\x_1x_2=1-m\end{matrix}\right.\\ \text{Ta có }5\left(\dfrac{1}{x_1}+\dfrac{1}{x_2}\right)-x_1x_2+4=0\\ \Leftrightarrow5\cdot\dfrac{x_1+x_2}{x_1x_2}-x_1x_2+4=0\\ \Leftrightarrow\dfrac{5}{1-m}+m-1+4=0\\ \Leftrightarrow\dfrac{5}{1-m}+m+3=0\\ \Leftrightarrow5+\left(1-m\right)\left(m+3\right)=0\\ \Leftrightarrow m^2+2m-8=0\\ \Leftrightarrow m^2-2m+4m-8=0\\ \Leftrightarrow\left(m-2\right)\left(m+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}m=2\left(n\right)\\m=-4\left(l\right)\end{matrix}\right.\)
Vậy $m=2$
Dạ mọi người giúp em với ạ.Em cảm ơn ạ
1 had gone away, I arrived at the party
2 reached the ground, the football match had ended
3 got to the airport, the plane had taken off
4 had done all the exercises, he went out with his friends
5 I arrived, Jack had left the office
6 he had done all his work, he went home
7 picked up their bags, they had eaten all the food
8 of 20, Madonna had become famous
9 I had heard the condition, I decided not to enter for the competition
10 Steven bought a new motorbike, he had saved enough money
1 A
2 A
3 A
4 A
Dạ mọi người giúp dùm em bài này với, em cảm ơn ạ
Giải phương trình
x3 + x(1 + \(\sqrt{3-x}\)) = 4\(\sqrt{3-x}\)
ĐK: \(x\le3\)
Đặt \(a=\sqrt{3-x}\left(a\ge0\right)\) \(\Leftrightarrow3-a^2=x\)
Pttt: \(x^3+\left(3-a^2\right)\left(1+a\right)=4a\)
\(\Leftrightarrow x^3-a^3-a^2-a+3=0\)
\(\Leftrightarrow x^3-a^3+\left(3-a^2\right)-a=0\)
\(\Leftrightarrow\left(x-a\right)\left(x^2+ax+a^2\right)+\left(x-a\right)=0\)
\(\Leftrightarrow x-a=0\) \(\Leftrightarrow x=a\) \(\Leftrightarrow x=\sqrt{3-x}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2=3-x\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x^2+x-3=0\end{matrix}\right.\)\(\Rightarrow x=\dfrac{-1+\sqrt{13}}{2}\)(thỏa)
Vậy...
Mọi người giúp em tìm đkxđ của hệ phương trình với ạ. Em cảm ơn
Cho phương trình: \(x^2-2x+m-3=0\). Tìm giá trị của m để phương trình có hai nghiệm phân biệt x1,x2 thỏa mãn điều kiện: x1\(x^2_1-2x_2+x1.x2=-12\)
Mọi người ơi, giúp em bài này với ạ, em cảm ơn rất nhiều ạ!!!
Lời giải:
Để pt có 2 nghiê pb thì:
$\Delta'=1-(m-3)>0\Leftrightarrow m< 4$
Áp dụng định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=m-3\end{matrix}\right.\)
Khi đó:
\(x_1^2-2x_2+x_1x_2=-12\)
\(\Leftrightarrow x_1^2-2(2-x_1)+x_1(2-x_1)=-12\)
\(\Leftrightarrow x_1=-2\Leftrightarrow x_2=2-x_1=4\)
$m-3=x_1x_2=(-2).4=-8$
$\Leftrightarrow m=-5$ (tm)