Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nàng tiên cá
Xem chi tiết
Nguyệt
24 tháng 4 2019 lúc 19:19

\(\left(x-4\right).\left(x+4\right)\ge\left(x+3\right)^2+5\)

\(\Rightarrow x^2-16\ge x^2+6x+9+5\)

\(\Rightarrow x^2-16\ge x^2+6x+14\)

\(\Rightarrow-30\ge6x\Rightarrow-5\ge x\)

Vậy...

Chuột yêu Gạo
Xem chi tiết
Thiên Dy
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Huy Hoàng Cao
Xem chi tiết
Lân Trần Quốc
30 tháng 3 2020 lúc 19:15

ĐK: \(x\in R\backslash\left\{-4,-3,-2,-1\right\}\)

PT ban đầu

\(\Leftrightarrow\frac{x+2-x-1}{\left(x+1\right)\left(x+2\right)}+\frac{x+3-x-2}{\left(x+2\right)\left(x+3\right)}+\frac{x+4-x-3}{\left(x+3\right)\left(x+4\right)}+\frac{x+5-x-4}{\left(x+4\right)\left(x+5\right)}=\frac{1}{x+1}-403\\ \Leftrightarrow\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+5}=\frac{1}{x+1}-403\\ \Leftrightarrow\frac{1}{x+5}=403\\ \Leftrightarrow x+5=\frac{1}{403}\Leftrightarrow x=\frac{-2014}{403}\)

Chúc bạn học tốt nhaok.

Khách vãng lai đã xóa
Hòa Huỳnh
Xem chi tiết
Minh Hiếu
25 tháng 1 2022 lúc 21:25

Ta có:

\(\left|x-1\right|+\left|x-5\right|=\left|x-1\right|+\left|5-x\right|\)

≥ \(\left|x-1+5-x\right|=4\)

mà \(4-\left|x-3\right|\)≤ 4

Dấu "="⇔ \(x=3\)

Kimian Hajan Ruventaren
Xem chi tiết
Hồng Phúc
21 tháng 1 2021 lúc 12:33

a, \(\left|x+2\right|+\left|-2x+1\right|\le x+1\left(1\right)\)

TH1: \(x\le-2\)

\(\Rightarrow x+1\le-1< \left|x+2\right|+\left|-2x+1\right|\)

\(\Rightarrow\) vô nghiệm

TH2: \(-2< x\le\dfrac{1}{2}\)

\(\left(1\right)\Leftrightarrow x+2-2x+1\le x+1\)

\(\Leftrightarrow x\ge1\)

\(\Rightarrow x\in\left[1;\dfrac{1}{2}\right]\)

TH3: \(x>\dfrac{1}{2}\)

\(\left(1\right)\Leftrightarrow x+2+2x-1\le x+1\)

\(\Leftrightarrow x\le0\)

\(\Rightarrow\) vô nghiệm

Vậy \(x\in\left[1;\dfrac{1}{2}\right]\)

Hồng Phúc
21 tháng 1 2021 lúc 12:46

b, \(\left|x+2\right|-\left|x-1\right|< x-\dfrac{3}{2}\left(2\right)\)

TH1: \(x\le-2\)

\(\left(2\right)\Leftrightarrow-x-2+x-1< x-\dfrac{3}{2}\)

\(\Leftrightarrow x>-\dfrac{3}{2}\)

\(\Rightarrow\) vô nghiệm

TH2: \(-2< x\le1\)

\(\left(2\right)\Leftrightarrow x+2+x-1< x-\dfrac{3}{2}\)

\(\Leftrightarrow x< -\dfrac{5}{2}\)

\(\Rightarrow\) vô nghiệm

TH3: \(x>1\)

\(\left(2\right)\Leftrightarrow x+2-x+1< x-\dfrac{3}{2}\)

\(\Leftrightarrow x>\dfrac{9}{2}\)

\(\Rightarrow x\in\left(\dfrac{9}{2};+\infty\right)\)

Vậy \(x\in\left(\dfrac{9}{2};+\infty\right)\)

Hồng Phúc
21 tháng 1 2021 lúc 12:58

c, Tương tự a,b

d, ĐK: \(x\ne-2;x\ne1\)

\(\left|\dfrac{-5}{x+2}\right|< \left|\dfrac{10}{x-1}\right|\)

\(\Leftrightarrow\dfrac{1}{\left|x+2\right|}< \dfrac{2}{\left|x-1\right|}\)

\(\Leftrightarrow2\left|x+2\right|>\left|x-1\right|\)

\(\Leftrightarrow4\left(x+2\right)^2>\left(x-1\right)^2\)

\(\Leftrightarrow4\left(x^2+4x+4\right)>x^2-2x+1\)

\(\Leftrightarrow3x^2+18x+15>0\)

\(\Leftrightarrow...\)

e, ĐK: \(x\ne-1\)

\(\left|\dfrac{2-3\left|x\right|}{1+x}\right|\le1\)

\(\Leftrightarrow\left|2-3\left|x\right|\right|\le\left|x+1\right|\)

\(\Leftrightarrow\left(2-3\left|x\right|\right)^2\le\left(x+1\right)^2\)

\(\Leftrightarrow4+9x^2-12\left|x\right|\le x^2+2x+1\)

\(\Leftrightarrow8x^2-12\left|x\right|-2x+3\le0\)

Đến đây dễ rồi, xét hai trường hợp để phá dấu giá trị tuyệt đối rồi đối chiếu điêì kiện.

Nguyễn Khánh Toàn
Xem chi tiết
Lương Đại
31 tháng 3 2022 lúc 14:48

bạn tải ảnh về r up lại đi bạn

Lương Đại
31 tháng 3 2022 lúc 15:50

\(a,4\left(x-3\right)^2-\left(2x-1\right)^2\ge12\)

\(\Leftrightarrow4x^2-24x+36-4x^2-4x+1\ge12\)

\(\Leftrightarrow-28x+37\ge12\)

\(\Leftrightarrow-28x\ge12-37\)

\(\Leftrightarrow-28x\ge-25\)

\(\Leftrightarrow x\le\dfrac{25}{28}\)

Vậy \(S=\left\{x\left|x\le\dfrac{25}{28}\right|\right\}\)

b, \(\left(x-4\right)\left(x+4\right)\ge\left(x+3\right)^2+5\)

\(\Leftrightarrow x^2-16\ge x^2+6x+9+5\)

\(\Leftrightarrow x^2-x^2-6x\ge9+5+16\)

\(\Leftrightarrow-6x\ge30\)

\(\Leftrightarrow x\le-5\)

Vậy \(S=\left\{x\left|x\le-5\right|\right\}\)

\(c,\left(3x-1\right)^2-9\left(x+2\right)\left(x-2\right)< 5x\)

\(\Leftrightarrow9x^2-6x-1-9x^2+36< 5x\)

\(\Leftrightarrow9x^2-9x^2-6x-5x+36+1< 0\)

\(\Leftrightarrow-11x+37< 0\)

\(\Leftrightarrow-11x< -37\)

\(\Leftrightarrow x>\dfrac{37}{11}\)

vậy \(S=\left\{x\left|x>\dfrac{37}{11}\right|\right\}\)

Nguyễn Văn Du
Xem chi tiết