Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
mèo
Xem chi tiết
Vũ Quý Đạt
28 tháng 12 2015 lúc 0:27

ta có\(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{c+a+b}=1\)

ta lại có tương tự M<2

suy ra Mko ơphair số nguyên

Ham Eunjung
Xem chi tiết
Anh Dao
Xem chi tiết
ImNotFound
Xem chi tiết
Vô danh
20 tháng 3 2022 lúc 10:21

Tham khảo:Câu hỏi của Tâm Lê Huỳnh Minh - Toán lớp 7 - Học trực tuyến OLM

Valentine
Xem chi tiết
Sherry
Xem chi tiết
Nguyễn Văn Phúc Lâm
Xem chi tiết
Akai Haruma
26 tháng 12 2023 lúc 17:17

Lời giải:

Với $a,b,c>0$ ta có:

$M> \frac{a}{a+b+c}+\frac{b}{b+c+a}+\frac{c}{c+a+b}=\frac{a+b+c}{a+b+c}{a+b+c}=1(*)$

Mặt khác:
Xét hiệu: $\frac{a}{a+b}-\frac{a+c}{a+b+c}=\frac{-bc}{(a+b)(a+b+c)}<0$ với mọi $a,b,c>0$

$\Rightarrow \frac{a}{a+b}< \frac{a+c}{a+b+c}$

Tương tự ta cũng có: $\frac{b}{b+c}< \frac{b+a}{a+b+c}; \frac{c}{c+a}< \frac{c+b}{a+b+c}$

Cộng lại ta được: $M< \frac{a+c+b+a+c+b}{a+b+c}=\frac{2(a+b+c)}{a+b+c}=2(**)$

Từ $(*); (**)\Rightarrow 1< M< 2$ nên $M$ không là số nguyên.

Trần Phương Thảo
Xem chi tiết
vu minh hang
Xem chi tiết
Nguyễn Duy Hậu
6 tháng 5 2016 lúc 19:02

Dễ ý

Nếu a,b,c > 0

--- Chắc chắn là (a/a+b) + (b/b+c) + (c/c+a) khác 0 và khong phải là số nguyên rồi