\(A=\dfrac{1.2+2.3+3.4+...+2016.2017}{2017\times2018}=....\)
Tìm số hữu tỉ x biết
1.2-1/2!+2.3-1/3!+3.4-1/4!+.....+2016.2017-1/2017!
Tính biểu thức sau:
\(A=\left(2016-1-2-3-...-2017\right)\)
\(B=\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{2016.2017}\)
câu khống chế trong thi học kì trường mk đó!
\(B=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{2016}-\dfrac{1}{2017}\)
\(B=1-\dfrac{1}{2017}\)
\(B=\dfrac{2017}{2017}-\dfrac{1}{2017}\)
\(B=\dfrac{2016}{2017}\)
tinh tong A=1.2+2.3+3.4+4.5+5.6+...+2016.2017
A=1.2+2.3+3.4+4.5+5.6+...+2016.2017
=> 3A = 1.2.3+2.3.3+3.4.3+4.5.3+5.6.3+.......+2016.2017.3
=> 3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + 4.5.(6-3) + .......+ 2016.2017.(2018-2015)
=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +..........+ 2016.2017.2018 - 2015.2016.2017
=> 3A = 2016.2017.2018
=> A = 2016.2017.2018 : 3
Ta thấy:Các số trong dãy số trên cách nhau 1,1 đơn vị.
Số các số hạng là:
( 2016,2017 - 1,2 ) : 1,1 + 1 = 1832,819727 ( số )
Tổng là:
( 2016,2017 + 1,2 ) x 1832,819727 : 2 = 1848766,817
Đ/S: số trên dài wóa :))
1.2+2.3+3.4+....+2015.2016+2016.2017
11.2+12.3+13.4+14.5+...+12015.2016+12016.2017
=1−12+12−13+13−14+14−15+...+12015−12016+12016−12017
=1−12017=20162017
Rút gọn biểu thức : A = 1.2+2.3+3.4+....+2016.2017
A=1.2+2.3+3.4+4.5+5.6+...+2016.2017
=> 3A = 1.2.3+2.3.3+3.4.3+4.5.3+5.6.3+.......+2016.2017.3
=> 3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + 4.5.(6-3) + .......+ 2016.2017.(2018-2015)
=> 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 +..........+ 2016.2017.2018 - 2015.2016.2017
=> 3A = 2016.2017.2018
=> A = 2016.2017.2018 : 3
\(A=1.2+2.3+3.4+...+2016.2017\)
\(3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+2016.2017.\left(2018-2015\right)\)
\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.5.4+...+2016.2017.2018-2015.2016.2017\)
\(A=\frac{2016.2017.2018}{3}==2735245632\)
A=1.2+2.3+3.4+4.5+5.6+6.7+7.8+8.9+9.10+...+2016.2017
A=1.2.3+2.3.4+...2016.2017.2017-2.3.4+.....2015.2016.2017
A=1.2017=2017 :D làm sai nhá
Trần Đức Hùng lần đầu t soi bài m Hùng xinh gái ak :>
\(A=1.2+2.3+3.4+4.5+...+2016.2017\)
\(3A=1.2.3+2.3.\left(4-1\right)+...+2016.2017.\left(2018-2015\right)\)
\(3A=1.2.3+2.3.4-1.2.3+...+2016.2017.2018-2015.2016.2017\)
\(3A=2016.2017.2018\Rightarrow A=\frac{2016.2017.2018}{3}\)
p/s: lần sau lèm cẩn thận nha bn iu dấu, để mấy em lớp 6 bt nhục mặt vl :D
CMR: A=3/(1.2)^2+5/(2.3)^2+7/(3.4)^2+...+4033/(2016.2017)^2<1
\(A=\dfrac{3}{\left(1.2\right)^2}+\dfrac{5}{\left(2.3\right)^2}+...+\dfrac{4033}{\left(2016.2017\right)^2}\)
\(=\dfrac{3}{1.2^2}+\dfrac{5}{2^2.3^2}+...+\dfrac{4033}{2016^2.2017^2}\)
\(=\dfrac{1}{1}-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{2016^2}-\dfrac{1}{2017^2}\)
\(=1-\dfrac{1}{2017^2}< 1\)
\(\Rightarrow A< 1\left(đpcm\right)\)
Vậy...
Cho:
A=1/1.2+1/2.3+1/3.4+....+1/2016.2017.Chứng tỏ A<1
A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)
A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)
A = \(1-\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}-\frac{1}{3}\right)-...-\left(\frac{1}{2016}-\frac{1}{2016}\right)-\frac{1}{2017}\)
A = \(1-0-0-0...-0-\frac{1}{2017}\)
A = \(1-\frac{1}{2017}< 1\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{2016.2017}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}\)
\(A=1-\frac{1}{2017}=\frac{2016}{2017}< \frac{2017}{2017}=1\)
=> A<1(đpcm)
Tính tổng sau : A= \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2016.2017}\)
A = \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)
= \(1-\frac{1}{2017}\)
= \(\frac{2016}{2017}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}\)
\(A=1+\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+...+\left(-\frac{1}{2016}+\frac{1}{2016}\right)-\frac{1}{2017}\)
\(A=1+0+0+...+0-\frac{1}{2017}\)
\(A=1-\frac{1}{2017}\)
\(A=\frac{2017}{2017}-\frac{1}{2017}\)
\(A=\frac{2016}{2017}\)
Vậy: \(A=\frac{2016}{2017}\)
Cách làm của bạn Sang đầy đủ và chi tiết hơn đó bạn! :) Những bài có quy luật tương tự bạn cũng áp dụng cách giải trên nhé bạn.