Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tưởng Hương Thảo
Xem chi tiết
Đoàn Đức Hà
12 tháng 4 2021 lúc 19:09

Nếu \(a\ge1\)thì \(100a+3b+1\ge100\)suy ra \(100a+3b+1=225\)

\(\Rightarrow2^a+10a+b=1\)(vô lí do \(a\ge1\))

Do đó \(a=0\)

Phương trình ban đầu trở thành: 

\(\left(3b+1\right)\left(b+1\right)=225=3^2.5^2\).

Vì \(3b+1\)chia cho \(3\)dư \(1\)nên \(\orbr{\begin{cases}3b+1=25\\3b+1=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}b=8\\b=0\end{cases}}\).

Thử lại thấy \(b=8\)thỏa mãn.

Vậy \(\left(a,b\right)=\left(0,8\right)\).

Khách vãng lai đã xóa
Nguyễn Minh Hoàng
Xem chi tiết
Cô Hoàng Huyền
24 tháng 3 2018 lúc 20:56

Do a, b là các số tự nhiên nên 100a + 3b + 1 và 2a + 10a + b cũng là các số tự nhiên.

Ta có 225 = 32.52 nên \(Ư\left(225\right)=\left\{1;3;5;9;15;25;45;75;225\right\}\)

Nếu a = 0 thì ta có (3b + 1)(1 + b) = 225 

Do 1 + b < 3b + 1 nên ta có bảng:

1 + b135915
b024814
1 + 3b410162543
 LLLTML

Vậy ta có a = 0, b = 8.

Với a khác 0, ta có 100a > 100. Vậy thì 100a+ 3b + 1 = 225 hay a = 1 hoặc a = 2

Với a = 1, ta có: 12 + b = 1 (L)

Với a = 2, ta có: 24 + b = 1 (L)

Vậy tóm lại ta tìm được a = 0, b = 8.

Nguyễn Văn Hoàng
Xem chi tiết
Nguyễn Thị Bích Ngọc
Xem chi tiết
Witch Rose
22 tháng 7 2017 lúc 14:03

+) Nếu a>0 khi đó VT>225 (với mọi b là số tự nhiên) => MT

=>a=0

=> (3b+1)(b+1)=225

=> tìm đc b

Nguyễn Thị Bích Ngọc
22 tháng 7 2017 lúc 14:07

bạn cho mình hỏi b=bao nhieu

Nguyễn Thị Minh Phương
22 tháng 7 2017 lúc 14:09

Đáp án là:

a = 0

b = 8

Bye My Love
Xem chi tiết
Nguyễn Minh Hoàng
Xem chi tiết
Wall HaiAnh
18 tháng 3 2018 lúc 19:07

Trả lời

Ta có

\(\left(100a+3b+1\right)\left(2^a+10a+b\right)=225\left(1\right)\)

Mà 225 là số lẻ nên \(\hept{\begin{cases}100a+3b+1\\2^a+10a+b\end{cases}}\)cùng lẻ (2)

*) Với a=0 ta có

Từ (1)<=>(100.0+3b+1)(\(2^0\)+10.0+b)=225

<=>(3b+1)(1+b)=225=\(3^2.5^2\)

Do 3b+1 :3 dư 1 và 3b+1>1+b

Nên (3b+1)(1+b)=25.9\(\Rightarrow\hept{\begin{cases}3b+1=25\\1+b=9\end{cases}\Leftrightarrow b=8}\)

*) Với a\(\ne\)0 (a\(\in N\)), ta có:

Khi đó 100a là số chẵn, từ (2)=>3b+1 lẻ=>b chẵn

\(\Rightarrow2^a+10a+b\)chẵn, trái với (2)

\(\Rightarrow b=\varnothing\)

Vậy \(\hept{\begin{cases}a=0\\b=8\end{cases}}\)

ngsjkyr
15 tháng 5 2018 lúc 21:12

câu này sai rồi bạn ơi tại vì chẵn + lẻ vẫn = lẻ mà bạn

phan hoang vu
5 tháng 4 2019 lúc 18:30

con chó ngsjkyr lẻ x  lẻ = lẻ

Nguyễn Văn Hoàng
Xem chi tiết
Edogawa Conan
12 tháng 7 2017 lúc 7:52

a) Ta có: Vì 225 là số lẻ nên (100a + 3b + 1) và (2^a + 10a + b) cũng nhận giá trị lẻ.

Th1: Nếu a \(\ne\)0 \(\Rightarrow\)2^a + 10a nhận giá trị chẵn với mọi a \(\Rightarrow\)b nhận giá trị lẻ.

\(\Rightarrow\)3b cũng nhận giá trị lẻ.

\(\Rightarrow\)100a + 3b + 1 nhận giá trị chẵn (vô lí)

Th2: Nếu a = 0 thì thay vào ta có:

(100 x 0 + 3b + 1)(2^0 + 10 x 0 + b) = 225

\(\Rightarrow\)(3b + 1) x (1 + b) = 225=225 . 1 = 75 x 3 = 45 x 5 = 25 x 9 = 15 x 15

Vì b là số tự nhiên nên 3b + 1> b + 1 và 3b + 1 chia 3 dư 1

Vậy 3b + 1= 25; b +1 = 9

Vậy a = 0; b= 8

Nguyenvanan
10 tháng 4 2018 lúc 12:33

Sai rồi 100a chẵn, 3b lẻ cộng với 1 sẽ là chẵn suy ra 100a+3b+1 chẵn chứ . Bạn hoàng làm sai rồi

ngsjkyr
15 tháng 5 2018 lúc 21:35

sai nặng rồi vì nếu 225 là số lẻ thì có 1 TH

TH cả 2 đều là lẻ là sai vì lẻ nhaan2 = chẵn

suy ra chỉ có lẻ + chẵn =lẻ mà thôi

Vũ Thị Linh Đan
Xem chi tiết
George H. Dalton
Xem chi tiết