cho x,y>1 tìm giá trị nhỏ nhất của biểu thức
P =\(\dfrac{x^2}{y-1}+\dfrac{y^2}{x-1}+2013\)
Cho các số thực dương x,y > 1 . Tìm giá trị nhỏ nhất của biểu thức P = \(\dfrac{x^2}{y-1}+\dfrac{y^2}{x-1}\)
Áp dụng BĐT AM-GM:
\(P=\dfrac{x^2}{y-1}+\dfrac{y^2}{x-1}\)
\(=\dfrac{x^2}{y-1}+4\left(y-1\right)+\dfrac{y^2}{x-1}+4\left(x-1\right)-4\left(x+y\right)+8\)
\(\ge2\sqrt{\dfrac{x^2}{y-1}.4\left(y-1\right)}+2\sqrt{\dfrac{y^2}{x-1}.4\left(x-1\right)}-4\left(x+y\right)+8\)
\(\ge4\left(x+y\right)-4\left(x+y\right)+8=8\)
\(\Rightarrow P_{min}=8\Leftrightarrow x=y=2\)
\(\dfrac{x^2}{y-1}+4\left(y-1\right)\ge4x\) ; \(\dfrac{y^2}{x-1}+4\left(x-1\right)\ge4y\)
Cộng vế:
\(P+4\left(x+y\right)-8\ge4\left(x+y\right)\Rightarrow P\ge8\)
Dấu "=" xảy ra khi \(x=y=2\)
cho các số dương x và y thỏa mãn \(\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{1}{2}\)
Tìm giá trị nhỏ nhất của biểu thức A=x+y
Áp dụng cosi
`1/x^2+1/y^2>=2/(xy)`
`=>1/2>=2/(xy)`
`=>xy>=4`
Aps dụng cosi
`=>x+y>=2\sqrt{xy}=2.2=4`
Dấu "=" xảy ra khi `x=y=4`
Có : \(\dfrac{1}{2}=\dfrac{1}{x^2}+\dfrac{1}{y^2}\ge2\sqrt{\dfrac{1}{x^2}\cdot\dfrac{1}{y^2}}=\dfrac{2}{xy}\)
\(\Rightarrow xy\ge4\)
Ta có : \(A=x+y\ge2\sqrt{xy}=2\sqrt{4}=4\)
Dấu "=" xảy ra khi \(x=y=2\)
Vậy min A = 4 khi $x=y=2$
tìm giá trị nhỏ nhất của biểu thức:
P= [(\(\dfrac{-1}{3}\))2 x3+(2x2)2+ \(\dfrac{1}{2}\) ]-[x(\(\dfrac{1}{3}\)x)2+\(\dfrac{3}{2^3}\)+x4 ]+(y-2013)2
\(P=\left[\left(\dfrac{-1}{3}\right)^2x^3+\left(2x^2\right)^2+\dfrac{1}{2}\right]-\left[x\left(\dfrac{1}{3}x\right)^2+\dfrac{3}{2^3}+x^4\right]+\left(y-2013\right)^2=\left(\dfrac{1}{9}x^3+4x^4+\dfrac{1}{2}\right)-\left(\dfrac{1}{9}x^3+x^4+\dfrac{3}{8}\right)+\left(y-2013\right)^2=3x^4+\dfrac{1}{8}+\left(y-2013\right)^2\ge\dfrac{1}{8}\).
Dấu "=" xảy ra khi x = 0; y = 2013.
đây là những món quà mà bn sẽ nhận đc: 1: áo quần 2: tiền 3: đc nhiều người yêu quý 4: may mắn cả 5: luôn vui vẻ trong cuộc sống 6: đc crush thích thầm 7: học giỏi 8: trở nên xinh đẹp phật sẽ ban cho bn những điều này nếu cậu gửi tin nhắn này cho 25 người,
Cho các số thực dương x,y thỏa mãn x + \(\dfrac{1}{y}\) ≤ 1 .Tìm giá trị nhỏ nhất của biểu thức P = \(\dfrac{x^2-2xy+2y^2}{xy+y^2}\)
\(1\ge x+\dfrac{1}{y}\ge2\sqrt{\dfrac{x}{y}}\Rightarrow\dfrac{x}{y}\le\dfrac{1}{4}\)
Đặt \(\dfrac{x}{y}=a\Rightarrow0< a\le\dfrac{1}{4}\)
\(P=\dfrac{\left(\dfrac{x}{y}\right)^2-\dfrac{2x}{y}+2}{\dfrac{x}{y}+1}=\dfrac{a^2-2a+2}{a+1}=\dfrac{4a^2-8a+8}{4\left(a+1\right)}=\dfrac{4a^2-13a+3+5\left(a+1\right)}{4\left(a+1\right)}\)
\(P=\dfrac{5}{4}+\dfrac{\left(1-4a\right)\left(3-a\right)}{4\left(a+1\right)}\ge\dfrac{5}{4}\)
Dấu "=" xảy ra khi \(a=\dfrac{1}{4}\) hay \(\left(x;y\right)=\left(\dfrac{1}{2};2\right)\)
Cho hai số thực x và y thỏa mãn x, y > 0 và xy = 1.
Tìm giá trị nhỏ nhất của biểu thức A = \(\dfrac{1}{(1+x)^2} + \dfrac{1}{(1+y)^2}\)
A>=1/(1+xy)=1/2
Dấu = xảy ra khi x=y=1
cho các số thực dương x,y thỏa mãn \(x+\dfrac{1}{y}\le1\) tìm giá trị nhỏ nhất của biểu thức P=\(\dfrac{x^2-2xy+2y^2}{xy+y^2}\)
Cho x, y > 0 thỏa mãn x + y = 1. Tìm giá trị nhỏ nhất của biểu thức P = \(\dfrac{x}{\sqrt{1-x}}+\dfrac{y}{\sqrt[]{1-y}}\)
\(P=\dfrac{x}{\sqrt{x+y-x}}+\dfrac{y}{\sqrt{x+y-y}}=\dfrac{x}{\sqrt{y}}+\dfrac{y}{\sqrt{x}}\)
\(=\dfrac{x^2}{x\sqrt{y}}+\dfrac{y^2}{y\sqrt{x}}\ge\dfrac{\left(x+y\right)^2}{x\sqrt{y}+y\sqrt{x}}=\dfrac{\left(x+y\right)^2}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}\)
\(\ge\dfrac{\left(x+y\right)^2}{\dfrac{x+y}{2}.\left(1.\sqrt{x}+1.\sqrt{y}\right)}\ge\dfrac{\left(x+y\right)^2}{\dfrac{x+y}{2}.\sqrt{\left(1^2+1^2\right)\left(x+y\right)}}=\dfrac{1}{\dfrac{1}{2}\sqrt{2}}=\sqrt{2}\)
"=" khi x = y = 1/2
1, cho x,y là các số thực dương thỏa mãn điều kiện:x+y≤1. Tìm giá trị nhỏ nhất của biểu thức: K=\(4xy+\dfrac{1}{x^2+y^2}+\dfrac{2}{xy}\)
\(K=\left(4xy+\dfrac{1}{4xy}\right)+\left(\dfrac{1}{x^2+y^2}+\dfrac{1}{2xy}\right)+\dfrac{5}{4xy}\)
\(K\ge2\sqrt{\dfrac{4xy}{4xy}}+\dfrac{4}{x^2+y^2+2xy}+\dfrac{5}{\left(x+y\right)^2}\ge2+4+5=11\)
\(K_{min}=11\) khi \(x=y=\dfrac{1}{2}\)
Cho hai số thực dương x, y thỏa mãn: x.y=2. Tìm giá trị nhỏ nhất của biểu thức: \(P=\dfrac{1}{x}+\dfrac{1}{2y}+\dfrac{1}{x+2y}\)
\(P=\dfrac{x+2y}{2xy}+\dfrac{1}{x+2y}=\dfrac{x+2y}{4}+\dfrac{1}{x+2y}\)
\(P=\dfrac{x+2y}{16}+\dfrac{1}{x+2y}+\dfrac{3\left(x+2y\right)}{16}\)
\(P\ge2\sqrt{\dfrac{x+2y}{16\left(x+2y\right)}}+\dfrac{3}{16}.2\sqrt{2xy}=\dfrac{5}{4}\)
\(P_{min}=\dfrac{5}{4}\) khi \(\left(x;y\right)=\left(2;1\right)\)