Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quỳnh Như
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 12 2023 lúc 18:51

D thuộc trục Ox nên D(x;0)

\(DA=\sqrt{\left(-1-x\right)^2+\left(4-0\right)^2}=\sqrt{\left(x+1\right)^2+16}\)

\(DB=\sqrt{\left(0-x\right)^2+\left(-2-0\right)^2}=\sqrt{x^2+4}\)

Để ΔDAB cân tại D thì DA=DB

=>\(\left(x+1\right)^2+16=x^2+4\)

=>\(x^2+2x+1+16=x^2+4\)

=>2x+17=4

=>2x=4-17=-13

=>\(x=-\dfrac{13}{2}\)

Vậy: \(D\left(-\dfrac{13}{2};0\right)\)

nguyễn thu thúy
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Hoàng Tử Hà
14 tháng 1 2021 lúc 21:00

Gọi K là hình chiếu của A lên BC, I là hình chiếu của B lên AC

\(\Rightarrow\left\{{}\begin{matrix}AK\perp BC\\BI\perp AC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AK}.\overrightarrow{BC}=\overrightarrow{0}\\\overrightarrow{BI}.\overrightarrow{AC}=\overrightarrow{0}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(x_K-x_A\right)\left(x_C-x_B\right)=0\\\left(y_K-y_A\right)\left(y_C-y_B\right)=0\\\left(x_I-x_B\right)\left(x_C-x_A\right)=0\\\left(y_I-y_B\right)\left(y_C-y_A\right)=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}I\left(...\right)\\K\left(....\right)\end{matrix}\right.\)

Viết phương trình đường thẳng ua A và K; Viết phương trìn đường thẳng ua B và I.

Giao điểm của 2 đường thẳng đó chính là tọa độ trực tâm H

Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 12 2020 lúc 20:48

Gọi \(M\left(0;m\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(-1;m+2\right)\\\overrightarrow{AB}=\left(-5;7\right)\end{matrix}\right.\)

3 điểm M;A;B thẳng hàng khi:

\(\dfrac{-1}{-5}=\dfrac{m+2}{7}\Rightarrow m=-\dfrac{3}{5}\)

\(\Rightarrow M\left(0;-\dfrac{3}{5}\right)\)

Phú Phạm Minh
Xem chi tiết
Hoaa
12 tháng 12 2020 lúc 11:23

thiếu điểm C k bạn?

Quynh
Xem chi tiết
Nguyễn thị ngọc hoan
Xem chi tiết
Hồng Phúc
23 tháng 1 2021 lúc 16:57

Giả sử trực tâm của tam giác ABC có tọa độ \(H\left(x;y\right)\)

\(\left\{{}\begin{matrix}\overrightarrow{BC}=\left(6;-2\right)\\\overrightarrow{AH}=\left(x-1;y\right)\end{matrix}\right.\Rightarrow\overrightarrow{BC}\perp\overrightarrow{AH}\Leftrightarrow\overrightarrow{AH}.\overrightarrow{BC}=0\)

\(\Leftrightarrow6\left(x-1\right)-2y=0\)

\(\Leftrightarrow3x-y=3\left(1\right)\) 

Lại có:

\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-2;1\right)\\\overrightarrow{CH}=\left(x-5;y+1\right)\end{matrix}\right.\Rightarrow\overrightarrow{AB}\perp\overrightarrow{CH}\Leftrightarrow\overrightarrow{CH}.\overrightarrow{AB}=0\)

\(\Leftrightarrow-2\left(x-5\right)+y+1=0\)

\(\Leftrightarrow-2x+y=-11\left(2\right)\)

\(\left(1\right);\left(2\right)\Rightarrow\left\{{}\begin{matrix}x=-8\\y=-27\end{matrix}\right.\Rightarrow H\left(-8;-27\right)\)

khanh quoc
Xem chi tiết
Phạm Nhật Trúc
Xem chi tiết