Cho tam giác ABC có AB=AC . Tia phân giác góc A cắt BC tại D .
a, Chứng minh tam giác ABD bằng tam giác ACD .
b , Trên nửa mặt phẳng bờ BC chứa điểm A vẽ tia Cx vuông góc BC . Trên nửa mặt phẳng bờ chứa AB chứa điểm C vẽ tia AY song song BC . Chứng minh góc yAc = góc ABC .
c , Chứng minh AD song song Cx
d, Gọi I là trung điểm của AC , K là giao điểm của 2 tia Ay và Cx . Chứng minh I là trung điểm của DK .
cho tam giác ABC có AB=AC tia phân giác của góc A cắt BC tại D
a, chứng minh tam giác abd = tam giác acd
b, trên nủa mặt phẳng bời bc chứa điểm a vẽ tia cx vuông góc bc trên nửa mặt phẳng bờ ab chứa điểm c vẽ tia ay song song ac. chứng minh góc yac bằng góc abc
c, chứng minh ad song song cx
d, gọi I là trung điểm của ac. K là giao điểm của hai tia AI và Cx. chứng minh I là trung điểm của DK
Bạn tự vẽ hình nhé
a) Xét \(\Delta ABD\)và\(\Delta ACD\)có:
AB = AC ( gt)
\(\widehat{BAD}=\widehat{CAD}\)(gt)
AD chung
\(\Rightarrow\)\(\Delta ABD=\Delta ACD\left(c.g.c\right)\)
Cho tam giác ABC có AB=AC. Tia phân giác góc A cắt BC tại D .
a)Chứng minh tam giác ABD= tam giác ACD
b)Trên nửa mf bờ bc chứa ddiemr A vẽ tia Cx vuông góc với BC. Trên nửa mf bờ chứa điểm C vẽ tia Ay song song với BC. Chứng minh \(\widehat{yAC}=\widehat{ABC}\)
c) Chứng minh AD song song với Cx
d)Gọi I là trung điểm AC, K là giảo điểm của 2 tia Ay và Cx. Chứng minh I là trung điểm của DK
Cho tam giác ABC có AB=AC. Tia phân giác góc A cắt BC tại D .
a)Chứng minh tam giác ABD= tam giác ACD
b)Trên nửa mf bờ bc chứa ddiemr A vẽ tia Cx vuông góc với BC. Trên nửa mf bờ chứa điểm C vẽ tia Ay song song với BC. Chứng minh ^yAC=^ABC
c) Chứng minh AD song song với Cx
d)Gọi I là trung điểm AC, K là giảo điểm của 2 tia Ay và Cx. Chứng minh I là trung điểm của DK
Cho tam giác ABC có các góc đều nhọn và AB<AC. Phân giác góc A cắt bd tại D. Vẽ BE vuông góc với AD tại E. Tia BE cắt cạnh AC tại F
a) Chứng minh AB=AF
b) Qua điểm F vẽ đg thẳng song song với BC, cắt AE tại H. Lấy điểm K nằm giữa D và C sao cho FH=DK. Chứng minh DH=KF và DH song song với KF
c) Chứng minh góc ABC lớn hơn góc C
1.Cho tam giác ABC có AB=AC. Tia phân giác góc A cắt BC tại D .
a)Chứng minh tam giác ABD= tam giác ACD
b)Trên nửa mf bờ bc chứa ddiemr A vẽ tia Cx vuông góc với BC. Trên nửa mf bờ chứa điểm C vẽ tia Ay song song với BC. Chứng minh ^yAC=^ABC
c) Chứng minh AD song song với Cx
d)Gọi I là trung điểm AC, K là giảo điểm của 2 tia Ay và Cx. Chứng minh I là trung điểm của DK
2.Cho tam giác ABC có các góc đều nhọn và AB<AC. Phân giác góc A cắt bd tại D. Vẽ BE vuông góc với AD tại E. Tia BE cắt cạnh AC tại F
a) Chứng minh AB=AF
b) Qua điểm F vẽ đg thẳng song song với BC, cắt AE tại H. Lấy điểm K nằm giữa D và C sao cho FH=DK. Chứng minh DH=KF và DH song song với KF
c) Chứng minh góc ABC lớn hơn góc C
a) Ta có: góc ^ADC=180* -(^CAD+^C)
^BDA=180*-(^BAD+^B)
mà ^CAD=^BAD(giả thiết)
^C=^B(giả thiết)
--> ^ADC=^BDA
lại có:
^CAD=^BAD(gt)
AD chung
--> tam giác ABD=tam giác ACD
Cho tam giác đều ABC , trên tia đối của tia CB lấy D. Trong nửa mặt phẳng bờ BC có chưa điểm A kẻ tia Cx song song vs AB, tia Dy song song vs AC , Cx và Dy cắt nhau tại E .CMR
a. Tam giác ECD đều
b. AD = BE
c.Gọi Y là giao điểm AD và BE,. cm góc BYD = 2 góc BAC
Cho tam giác có ba góc đều là góc nhọn. Gọi D là trung điểm của cạnh BC. Vẽ tia Cx song song với AB và Cx cắt đường thẳng AD tại H.
a) Chứng minh
b) Chứng minh BH // AC.
c) Gọi M là trung điểm của đoạn thẳng BH. Lấy điểm K trên Cx sao cho H là trung điểm của CK. Chứng minh ba điểm A, M, K thẳng hàng.
b: Xét ΔDCH và ΔDBA có
\(\widehat{DCH}=\widehat{DBA}\)(hai góc so le trong, CH//AB)
DC=DB
\(\widehat{CDH}=\widehat{BDA}\)(hai góc đối đỉnh)
Do đó: ΔDCH=ΔDBA
=>CH=BA
Xét tứ giác ABHC có
AB//HC
AB=HC
Do đó: ABHC là hình bình hành
=>AC//BH
c: H là trung điểm của CK
=>CH=HK
mà CH=AB
nên AB=KH
Xét tứ giác ABKH có
AB//KH
AB=KH
Do đó: ABKH là hình bình hành
=>AK cắt BH tại trung điểm của mỗi đường
mà M là trung điểm của BH
nên M là trung điểm của AK
=>A,M,K thẳng hàng
cho tam giác ABC có 3 góc đều là góc nhọn, D là trung điểm của cạnh BC, vẽ tia CX song song với tia AB sao cho CX cắt đường thẳng AD tại F
a,tam giác FCD bằng tam giác ABD
b, BF // AC
c,M là trùng điểmcủa BF, trên tia CX lấy điểm K sao cho F là trung điểm của KC. Chứng minh ba điểm A,M,K thẳng hàng
Cho tam giác ABC nhọn có AB < AC. Vẽ tia phân giác AD của góc BAC (D thuộc BC). Trên cạnh AC lấy điểm E sao cho AE = AB.
a) CM: BD = DE.
b) Đường thẳng DE và AB cắt nhau tại F. CM: tam giác DBF = DEC.
c) Qua C kẻ tia Cx song song với AB và cắt tia AD tại K. Gọi I là giao điểm của AK và CF. CM: I là trung điểm của AK.
a)
Xét ΔABD và ΔAED có:
AB=AE (giả thiết)
Góc BAD= góc EAD (do AD là phân giác góc A)
AD chung
⇒⇒ ΔABD=ΔAED (c-g-c)
b) Ta có ΔABD=ΔAED
⇒⇒ BD=DE và góc ABD= góc AED
⇒⇒ Góc FBD= góc CED (hai góc kề bù với hai góc bằng nhau)
Xét ΔDBF và ΔDEC có:
BD=DE
Góc DBF= góc DEC
Góc BDF= góc EDC ( đối đỉnh )
⇒⇒ ΔDBF=ΔDEC (g-c-g)
k cho mk na
làm sai bài rồi "Góc FBD= góc CED (hai góc kề bù với hai góc bằng nhau)" là cái j vậy?