Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Vân Anh
Xem chi tiết

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) ⇒ \(\dfrac{x^2}{a^2}=\dfrac{y^2}{b^2}=\dfrac{z^2}{c^2}\) 

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x^2}{a^2}\)  = \(\dfrac{y^2}{b^2}\) = \(\dfrac{z^2}{c^2}\) = \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}\) = \(\dfrac{x^2+y^2+z^2}{1}\) = \(x^2+y^2+z^2\) (1)

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}\) Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x}{a}=\dfrac{y}{b}=\dfrac{z}{c}=\dfrac{x+y+z}{a+b+c}\) = \(\dfrac{x+y+z}{1}\) = \(x+y+z\)

\(\dfrac{x}{a}\) = \(x+y+z\) ⇒ \(\dfrac{x^2}{a^2}\) = (\(x+y+z\)) (2) 

Từ (1) và (2) ta có :

\(\dfrac{x^2}{a^2}\) = \(x^2\) + y2 + z2 = ( \(x+y+z\))2 (đpcm)

Huỳnh Nguyên Như
17 tháng 3 2023 lúc 13:39

 ⇒ �2�2=�2�2=�2�2 

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

�2�2  = �2�2 = �2�2 = �2+�2+�2�2+�2+�2 = �2+�2+�21 = �2+�2+�2 (1)

��=��=�� Áp dụng tính chất dãy tỉ số bằng nhau ta có:

��=��=��=�+�+��+�+� = �+�+�1 = �+�+�

�� = �+�+� ⇒ �2�2 = (�+�+�) (2) 

Từ (1) và (2) ta có :

�2�2 = �2 + y2 + z2 = ( �+�+�)2 (đpCm)

Nguyễn Lý Ái Vân
Xem chi tiết
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 5 2019 lúc 5:43

Mặt cầu (S) tâm I(1; -2; -1) bán kính R = 5

d(I,(P)) = 3 < R

Do đó (P) cắt (S) theo một đường tròn, gọi đường tròn đó là (C).

nguyen hong thai
Xem chi tiết
missing you =
21 tháng 12 2021 lúc 20:14

\(3x+4y=1\Leftrightarrow y=\dfrac{1-4y}{3}\)

\(\Rightarrow A=x^2+y^2\Leftrightarrow\left(\dfrac{1-4y}{3}\right)^2+y^2=\dfrac{\left(4y-1\right)^2}{9}+y^2=\dfrac{16y^2-8y+1+9y^2}{9}=\dfrac{25y^2-8y+1}{9}=\dfrac{\left(5y\right)^2-2.5y.\dfrac{4}{5}+\left(\dfrac{4}{5}\right)^2+\dfrac{9}{25}}{9}=\dfrac{\left(5y-\dfrac{4}{5}\right)^2+\dfrac{9}{25}}{9}\ge\dfrac{\dfrac{9}{25}}{9}=\dfrac{1}{25}\left(đpcm\right)\)

\(A_{min}=\dfrac{1}{25}\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{4}{25}\\x=\dfrac{3}{25}\end{matrix}\right.\)

Nguyễn Hoàng Minh
22 tháng 12 2021 lúc 8:07

Áp dụng Bunhiacopski:

\(\left(x^2+y^2\right)\left(3^2+4^2\right)\ge\left(3x+4y\right)^2=1\\ \Leftrightarrow25\left(x^2+y^2\right)\ge1\Leftrightarrow x^2+y^2\ge\dfrac{1}{25}\)

Dấu \("="\Leftrightarrow\dfrac{x^2}{3^2}=\dfrac{y^2}{4^2}\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{3x+4y}{9+16}=\dfrac{1}{25}\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{25}\\y=\dfrac{4}{25}\end{matrix}\right.\)

Hưng Việt Nguyễn
Xem chi tiết
Akai Haruma
15 tháng 9 2021 lúc 21:34

$A=x^2+y^2-6x+4y+20=(x^2-6x+9)+(y^2+4y+4)+7$

$=(x-3)^2+(y+2)^2+7\geq 0+0+7=7$
Vậy $A_{\min}=7$. Giá trị này đạt tại $(x-3)^2=(y+2)^2=0$

$\Leftrightarrow x=3; y=-2$

---------------------

$B=9x^2+y^2+2z^2-18x+4z-6y+30$

$=(9x^2-18x+9)+(y^2-6y+9)+(2z^2+4z+2)+10$

$=9(x^2-2x+1)+(y^2-6y+9)+2(z^2+2z+1)+10$

$=9(x-1)^2+(y-3)^2+2(z+1)^2+10\geq 10$
Vậy $B_{\min}=10$. Giá trị này đạt tại $(x-1)^2=(y-3)^2=(z+1)^2$

$\Leftrightarrow x=1; y=3; z=-1$

Akai Haruma
15 tháng 9 2021 lúc 21:40

$C=x^2+y^2+z^2-xy-yz-xz+3$

$2C=2x^2+2y^2+2z^2-2xy-2yz-2xz+6$

$=(x^2-2xy+y^2)+(y^2-2yz+z^2)+(x^2-2xz+z^2)+6$

$=(x-y)^2+(y-z)^2+(z-x)^2+6\geq 6$

$\Rightarrow C\geq 3$

Vậy $C_{\min}=3$. Giá trị này đạt tại $x-y=y-z=z-x=0$

$\Leftrihgtarrow x=y=z$

--------------------------------------

$D=5x^2+2y^2+4xy-2x+4y+2021$

$=2(y^2+2xy+x^2)+3x^2-2x+4y+2021$

$=2(x+y)^2+4(x+y)+3x^2-6x+2021$
$=2(x+y)^2+4(x+y)+2+3(x^2-2x+1)+2016$

$=2[(x+y)^2+2(x+y)+1]+3(x^2-2x+1)+2016$

$=2(x+y+1)^2+3(x-1)^2+2016\geq 2016$

Vậy $D_{\min}=2016$ khi $x+y+1=x-1=0$

$\Leftrightarrow x=1; y=-2$

Akai Haruma
15 tháng 9 2021 lúc 21:42

$E=x^2-2x+4y^2+4y+2014$

$=(x^2-2x+1)+(4y^2+4y+1)+2012$

$=(x-1)^2+(2y+1)^2+2012$

$\geq 2012$

Vậy $E_{\min}=2012$. Giá trị này đạt tại $x-1=2y+1=0$

$\Leftrightarrow x=1; y=\frac{-1}{2}$

----------------------

$F=5x^2+5y^2+8xy+2y-2x+30$

$=4(x^2+2xy+y^2)+x^2+y^2+2y-2x+30$

$=4(x+y)^2+(x^2-2x+1)+(y^2+2y+1)+28$

$=4(x+y)^2+(x-1)^2+(y+1)^2+28\geq 28$

Vậy $F_{\min}=28$. Giá trị này đạt tại $x+y=x-1=y+1=0$

$\Leftrightarrow x=1; y=-1$

nguyen hong thai
Xem chi tiết
Hồ Minh Phi
Xem chi tiết
Pi Chan
Xem chi tiết