Tam giác ABC vuông tại A, đường cao AH. Biết AB=4, HC=6. Hãy giải tam giác này
có ai biết giải bài này k giải hộ mình vs ( mình cảm ơn )
bài 1: cho tam giác ABC vuông tại A kẻ đường cao AH. biết AB=15cm; HC=16cm. tính BC,AC,AH.
câu 2: cho tam giác ABC vuông tại A kẻ đường cao AH. biết AH=12cm; BC=25cm. tính AB,AC
bài 3: cho tam giác ABC vuông tại A kẻ đường cao AH. biết AB=6cm; BH=3cm. tính AH,AC,CH.
bài 4: cho tam giác ABC vuông tại A kẻ đường cao AH. tính diện tích tam giác ABC biết AH=12cm; BH=9cm.
bài 5: cho tam giác vuông , biết sỉ số của các cạnh góc vuông là\(\dfrac{5}{12}\) cạnh huyền là 26. tính độ dài các cạnh góc vuông và hình chiếu các cạnh góc vuông trên cạnh huyền.
bài 6: cho tam giác ABC vuông tại A. biết \(\dfrac{AB}{AC}\) =\(\dfrac{5}{7}\). đường cao AH=15cm. tính HB,HC
có ai biết giải bài này k giải hộ mình vs ( mình cảm ơn )
bài 1: cho tam giác ABC vuông tại A kẻ đường cao AH. biết AB=15cm; HC=16cm. tính BC,AC,AH.
câu 2: cho tam giác ABC vuông tại A kẻ đường cao AH. biết AH=12cm; BC=25cm. tính AB,AC
bài 3: cho tam giác ABC vuông tại A kẻ đường cao AH. biết AB=6cm; BH=3cm. tính AH,AC,CH.
bài 4: cho tam giác ABC vuông tại A kẻ đường cao AH. tính diện tích tam giác ABC biết AH=12cm; BH=9cm.
bài 5: cho tam giác vuông , biết sỉ số của các cạnh góc vuông là512512 cạnh huyền là 26. tính độ dài các cạnh góc vuông và hình chiếu các cạnh góc vuông trên cạnh huyền.
bài 6: cho tam giác ABC vuông tại A. biết ABACABAC =5757. đường cao AH=15cm. tính HB,HC
nhờ các bạn giải giúp hộ mình vs ạ mình cần gấp
1. Cho tam giác ABC vuông tại A, biết AH = 16, BH = 9. Tính AB.
2. Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Tính độ dài HB.
3. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12, BC = 15. Tính HC.
4. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 6, HC = 9. Tính độ dài AC.
5. Cho tam giác ABC vuông tại A, đường cao AH. Biết AB = 12cm, BC = 16cm. Tính AH
6. Cho tam giác ABC vuông tại A, đường cao AH. Biết HB = 8cm, HC = 12 cm. Tính AC.
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
Giúp mình với ak!!!!
1. Cho tam giác ABC vuông tại A, biết AB/AC=5/7 và đường cao AH=15cm. Tính HB, HC.
2. Cho tam giác ABC vuông tại A, có đường cao AH=14cm và HB/HC=1/4. Tính chu vi tam giác ABC.
1: AB/AC=5/7
=>HB/HC=(AB/AC)^2=25/49
=>HB/25=HC/49=k
=>HB=25k; HC=49k
ΔABC vuông tại A có AH là đường cao
nên AH^2=HB*HC
=>1225k^2=15^2=225
=>k^2=9/49
=>k=3/7
=>HB=75/7cm; HC=21(cm)
Cho tam giác ABC vuông tại A, đường cao AH. Tính độ dài AC, BC, AH. Biết AB=18cm, HC=16cm. Giúp mình giải bài này với.
cho tam giác ABC vuông tại A và đường cao AH
a) Biết HB=4 , HC=9. Giải tam giác ABC
b) Biết AB=6 , góc B=53 độ . giải tam giác ABC
c) E,F lần lượt là hình chiếu của H trên AB,AC,CM. Tam giác EHF là hình chữ nhật và AH=EF
Bài 1: Cho tam giác ABC vuông tại A, đường cao AH.
a) Biết AB= 9cm, BC= 15cm. Tính BH, HC
b) Biết BH= 1cm, HC= 3cm. Tính AB, AC
c) Biết AB= 6cm, AC= 8cm. Tính AH, BC
Bài 2: Cho tam giác ABC vuông tại A, đường cao AH. Biết AB= 3cm, BH= 2,4cm
a) Tính BC, AC, AH, HC b) Tính tỉ số lượng giác của góc B
Bài 3: Cho tam giác ABC có BC= 9cm, góc B= 60 độ, góc C= 40 độ, đường cao AH. Tính AH, AB, AC
Bài 1:
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=15-5,4=9,6(cm)
b) Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=1+3=4(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)
Cho tam giác ABC vuông tại A có đường cao AH chia cạnh huyền BC thành 2 đoạn: BH = 4 và HC = 6 cho tam giác ABC vuông tại A có đường cao AH chia cạnh huyền BC thành 2 đoạn: BH = 4 và HC = 6 a) tính độ dài AH, AB, AC b) Gọi M là trung điểm của AC. Tính số đo góc AMB ( làm tròn đến độ)
a: \(AH=2\sqrt{6}\left(cm\right)\)
\(AB=2\sqrt{10}\left(cm\right)\)
\(AC=2\sqrt{15}\left(cm\right)\)
Bài 1: Cho tam giác ABC vuông tại A, đường cao AH = 5cm. Biết CH = 6cm. tính:
a) AB, AC,BC và BH?
b) Diện tích tam giác ABC
Bài2: Cho tam giác ABC vuông tại A, đường cao AH; AB = 15cm; BC = 25cm. BTính:
a) AC,AH, HC và BH?
b) Diện tích tam giác ABC
\(1,\)
\(a,\) Áp dụng HTL tam giác
\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)
\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)