tìm các stn có 3 chữ số sao cho khi chia số đó cho 17 dư 8,chia 25 dư 16
tím stn có 3 chữ số sao cho số đó chia hết cho 17,cho 25 được các số dư theo thứ tự là 8 và 16
O número é 136 e 400 está procurando
Uma vez que a 8 x 17 = 136
16 x 25 = 400
Assim número de 3 dígitos é 136 e 400 estão procurando.
Tìm số tự nhiên có 3 chữ số sao cho chia số đó cho 17 dư 8 cho 25 dư 16
gọi số tự nhiên cần tìm là a ( a \(\in\)N* )
theo bài ra : a chia 17 dư 8
\(\Rightarrow\)a = 17k1 + 8 ( k1 \(\in\)N )
a chia 25 dư 16
\(\Rightarrow\)a = 25k2 + 16 ( k2 \(\in\)N )
\(\Rightarrow\)a + 9 \(⋮\)17 ; 25
\(\Rightarrow\)a + 9 \(\in\)BC ( 17 ; 25 )
BCNN ( 17 ; 25 ) = 425
\(\Rightarrow\)a + 9 = B ( 425 ) = { 0 ; 425 ; 850 ; ... }
Ta thấy 425 và 850 là hai số thỏa mãn bài ra
\(\Rightarrow\)a = { 416 ; 841 }
Vậy số tự nhiên cần tìm là 416 và 841
là 416 và 841
chỉ nói kết quả thôi nha
tự làm đi
nghe theo thầy Huấn
tìm stn có 3 chữ số ,sao khi chia nó cho 7,cho 25 được các số dư có thứ tự làn lượt là 8 và 16
Đề sai rồi bạn ơi , 8 chia hết cho 7 đó
Gọi số cần tìm là a ( a ∈ N* ; 99 < a < 1000 )
Theo bài ra , ta có :
\(\hept{\begin{cases}a-8⋮17\\a-16⋮25\end{cases}}\Rightarrow\hept{\begin{cases}\left(a-8\right)+17⋮17\\\left(a-16\right)+25⋮25\end{cases}}\Rightarrow\hept{\begin{cases}a+9⋮17\\a+9⋮25\end{cases}}\)
\(\Rightarrow a-9∈BC\left(17,25\right)\)
Vì 17 và 25 nguyên tố cùng nhau
=> BCNN( 17 . 25 ) = 17 . 25 = 425
=> BC( 17 , 25 ) = { 0 ; 425 ; 850 ; 1275 ; ... }
=> a + 9 ∈ { 0 ; 425 ; 850 ; 1275 ; ... }
=> a ∈ { 416 ; 841 ; 1266 ; ... } ( do a ∈ N* )
Mà 99 < a < 1000
=> a ∈ { 416 ; 841 }
Tìm số tự nhiên có 3 chữ số, biết rằng khi chia số đó cho 17 thì được số dư là 8, còn khi chia số đó cho 25 thì số dư là 16
Lời giải:
Do $a$ chia $25$ dư $16$ nên $a=25k+16$ với $k$ nguyên.
$a-8\vdots 17$
$\Rightarrow 25k+8\vdots 17$
$\Rightarrow 25k+25\vdots 17$
$\Rightarrow 25(k+1)\vdots 17$
$\Rightarrow k+1\vdots 17\Rightarrow k=17m-1$ với $m$ nguyên.
Vậy $a=25k+16=25(17m-1)+16=425m-9$
Do $a$ có 3 chữ số nên $100\leq 425m-9\leq 999$
$\Rightarrow 0< m<3$
$\Rightarrow m=1, 2$
$\Rightarrow a=416$ hoặc $a=841$
Tìm số tự nhiên a có 3 chữ số, sao cho khi a chia cho 17 thì dư 8, cho 25 thì dư 16
chia a cho 17 thì dư 8 thì suy ra a+9 chia hết cho 17
chia a cho 25 thì dư 16 suy ra a+9 chia hết cho 25
suy raa+9 chia hết cho 17 và 25
suy raa+9 thuộc BC(17;25)
17 = 17 vì 17 là số nguyên tố
25 = 52
suy ra BCNN(17;25)=17.52=425
suy ra a+9 thuộc B(425)={0;425;..}
suy ra a thuộc {-9;416;....}
vì a là số tự nhiên nhỏ nhất có 3 chữ số nên a = 416
vậy a = 416
TA có a chia cho 17 dư 8 , chia 25 dư 16
Suy ra a + 9 chia hết cho 17 ; 25
a + 9 thuộc BC ( 17 , 25 )
17 = 17
25 = 5^2
BCNN ( 17 , 25 ) = 5^2 . 17 = 425
B ( 425 ) = ( 0 ; 425 ; 850; 1275 ... )
Do a là số có 3 chữ số .SUy ra :
* a + 9 = 425 * a + 9 = 850
a = 425 - 9 a = 850-9
a = 416 a = 841
Vậy 2 số đó là 416 và 841
Tìm số tự nhiên có 3 chữ số biết rằng khi chia số đó cho 17 thì được số dư là 8 còn khi chia cho 25 thì được số dư là 16.
Gọi số tự nhiên có ba chữ số cần tìm là \(n\)
Ta có:
\(n:17\left(R=8\right)\Rightarrow\left(n+9\right)⋮17\)
\(n:25\left(R=16\right)\Rightarrow\left(n+9\right)⋮25\)
\(\Rightarrow\left(n+9\right)⋮\left(17;25\right)\Leftrightarrow\left(n+9\right)=BCNN\left(17,25\right)\Leftrightarrow\left(n+9\right)=425\)
\(\Rightarrow n+9=425\)
\(\Rightarrow n=416\)
Gọi số tự nhiên cần tìm đó là x ; \(x\in N\)
Ta có : \(x-8⋮17\); \(x-16⋮25\)và \(100< x< 1000\)
\(\Rightarrow x+9⋮17\)và \(x+9⋮25\) \(\Rightarrow x+9\in BC\left(17,25\right)\)và \(100< x< 1000\)
\(BCNN\left(17,25\right)=425\)và \(BC\left(17,25\right)=\left\{0;425;850;....\right\}\)
Với \(x+9=425\Rightarrow x=425-9=416\)
Với \(x+9=850\Rightarrow x=850-9=841\)
\(\Rightarrow\)số tự nhiên có 3 chữ số cần tìm là 416 và 841
Trả lời :..........................
416..............................
Hk tốt................................
Tìm một số có 3 chữ số biết số đó chia cho 17 dư 8 và chia cho 25 dư 16 .
tìm số tự nhiên có 3 chữ số, sao cho khi chia nó cho 17, cho 25 thì được các số dư theo thứ tự là 8 và 16