Cho số phức z thỏa mãn z + 15 + z − 15 = 8 v à | z + 15 i | + | z − 15 i | = 8 . Tính z .
A. z = 4 34 17
B. z = 2 5 5
C. z = 4 5
D. z = 5 4
Cho số phức z thỏa mãn z ( 1 - 2 i ) + z ¯ i = 15 + i
Tìm môđun của số phức z.
A. z = 5
B. z = 4
C. z = 2 5
D. z = 2 3
Đáp án A
Phương pháp
Gọi
Sử dụng định nghĩa hai số phức bằng nhau.
Cách giải
Cho số phức z thỏa mãn z 1 − 2 i + z ¯ i = 15 + i . Tìm môđun của số phức z
A. z = 5
B. z = 4
C. z = 2 5
D. z = 2 3
Cho số phức z thỏa mãn z 1 - 2 i + z i = 15 + i Tìm môđun của số phức z
Cho số phức z thỏa mãn z = i − m 1 − m m − 2 i , m ∈ ℝ là tham số và z . z ¯ = 1 5 . Khi đó số giá trị thỏa mãn là:
A. 2
B. 1
C. 0
D. 3
Cho số phức z thỏa mãn ( 1 - 3i) z là số thực và . Hỏi có bao nhiêu số phức z thỏa mãn
A. 1
B. 2
C. 3
D. 4
Chọn B.
Gọi số phức cần tìm là z = a + bi.
Ta có ( 1 - 3i) z = ( 1 - 3i) ( a + bi)
= a + 3b - 3ai + bi = a + 3b + ( b - 3a) i
+ Do ( 1 - 3i) z là số thực nên b - 3a = 0 hay b = 3a
+ ta có ⇔|a – 2 + (-b + 5)i| = 1
Hay ( a - 2) 2 + ( 5 - 3a) 2 = 1
(thỏa mãn)
Vậy có hai số phức z thỏa mãn là z = 2 + 6i và z = 7/5 + 21/5i
Cho số phức z thỏa mãn điều kiện z - 3 + 2 i = z - i Giả sử w là số phức có môđun nhỏ nhất trong các số phức z thỏa mãn điều kiện trên. Tính môđun của w
Câu 1 : Cho số phức \(z\) thỏa mãn \(z\) + ( 2 - i )\(\overline{z}\) = 3 - 5i. Môđun của số phức w = \(z \) - i bằng bao nhiêu ?
Câu 2 : Cho số phức \(z\) = a + bi, (a,b ∈ R ) thỏa mãn ( 3 + 2i )\(z\) + ( 2 - i )2 = 4 + i. Tính P = a - b
Cho số phức z thỏa mãn z - 1 - i = 1 , số phức w thỏa mãn w ¯ - 2 - 3 i = 2 . Tìm giá trị nhỏ nhất của z - w .
Cho số phức z thỏa mãn z − 1 − i = 1 , số phức w thỏa mãn w ¯ − 2 − 3 i = 2 . Tìm giá trị nhỏ nhất của z − w .
A. 17 + 3
B. 13 + 3
C. 13 - 3
D. 17 - 3