Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Rev
Xem chi tiết
Nguyễn Huy Tú
26 tháng 7 2021 lúc 9:15

a, Gọi ptđt (d) có dạng y = ax + b 

\(\left(d\right)//y=3x+1\Leftrightarrow\hept{\begin{cases}a=3\\b\ne1\end{cases}}\)

đt (d) đi qua A(3;7) <=> \(7=3a+b\)(*) 

Thay a = 3 vào (*) ta được : \(9+b=7\Leftrightarrow b=-2\)( tmđk )

Vậy ptđt có dạng y = 3x - 2

b, Hoành độ giao điểm thỏa mãn phương trình 

\(x^2=3x-2\Leftrightarrow x^2-3x+2=0\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\Leftrightarrow x=1;x=2\)

\(\Rightarrow y=1;y=4\)

Vậy (d) cắt (P) tại A( 1;1 ) ; B( 2 ; 4 )

Khách vãng lai đã xóa
Nguyễn Đăng Hưng
26 tháng 7 2021 lúc 8:39

a, Phương trình đường thẳng (d) là: y = ax + b 

Vì đường thẳng (d) song song với đường thẳng y = 3x + 1 nên

⇒⇒ {a=a′b≠b′{a=a′b≠b′ ⇔⇔ {a=3b≠1{a=3b≠1

Với a = 3 ta được pt đường thẳng (d): y = 3x + b

Vì đường thẳng (d) đi qua điểm A(3;7) nên thay x = 3; y = 7 ta được:

7 = 3.3 + b

⇔⇔ b = -2 (TM)

Vậy phương trình đường thẳng (d) là: y = 3x - 2

Chúc bn học tốt!

k mình nha

Khách vãng lai đã xóa
Rev
26 tháng 7 2021 lúc 8:49

sao chép bài của Trương Huy Hoàng ở H đc đấy nhỉ Nguyễn Đặng Hưng

Khách vãng lai đã xóa
Đào Minh Ngọc
Xem chi tiết
HHHHH
17 tháng 4 2020 lúc 9:44

Mục tiêu -500 sp mong giúp đỡ haha

Khách vãng lai đã xóa
Vu Anh Minh
Xem chi tiết
Đỗ Tuệ Lâm
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 4 2023 lúc 18:27

a. Em tự giải

b. Từ giả thiết ta có \(A\left(-2;1\right)\) và \(B\left(4;4\right)\)

Gọi phương trình (d) có dạng \(y=ax+b\), do (d) qua A và B nên:

\(\left\{{}\begin{matrix}-2a+b=1\\4a+b=4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{1}{2}\\b=2\end{matrix}\right.\) \(\Rightarrow y=\dfrac{1}{2}x+2\)

c. Câu này có vài cách giải cho lớp 9, cách nhanh nhất là sử dụng tính chất tiếp tuyến.

Từ M kẻ \(MH\perp AB\Rightarrow S_{ABM}=\dfrac{1}{2}MH.AB\)

Do AB cố định \(\Rightarrow S_{max}\) khi \(MH_{max}\)

Gọi \(d_1\) là đường thẳng song song d và tiếp xúc (P), gọi C là tiếp điểm \(d_1\) và (P)

Do \(d_1\) song song (d) nên pt có dạng: \(y=\dfrac{1}{2}x+b\)

Phương trình hoành độ giao điểm \(d_1\) và (P):

\(\dfrac{1}{4}x^2=\dfrac{1}{2}x+b\Rightarrow x^2-2x-4b=0\) (1)

Do \(d_1\) tiếp xúc (P) \(\Rightarrow\left(1\right)\) có nghiệm kép

\(\Rightarrow\Delta'=1+4b=0\Rightarrow b=-\dfrac{1}{4}\)

Thế vào (1) \(\Rightarrow x_C^2-2x_C+1=0\Rightarrow x_C=1\Rightarrow y_C=\dfrac{1}{4}\) \(\Rightarrow C\left(1;\dfrac{1}{4}\right)\)

Từ C kẻ \(CK\perp d\)

Giả sử HM kéo dài cắt \(d_1\) tại D \(\Rightarrow\) tứ giác CKHD là hình chữ nhật (2 cặp cạnh đối song song và 1 góc vuông)

\(\Rightarrow CK=DH\)

Mà \(DH=MH+MD\ge MH\Rightarrow CK\ge MH\)

\(\Rightarrow MH_{max}=CK\) khi M trùng C

Hay \(M\left(1;\dfrac{1}{4}\right)\)

Nguyễn Việt Lâm
20 tháng 4 2023 lúc 18:27

loading...

Nguyễn Việt Lâm
20 tháng 4 2023 lúc 17:59

Ủa câu c là M hay C em nhỉ?

Tiểu thư cá tính họ Vũ
Xem chi tiết
Happy
30 tháng 4 2016 lúc 22:36

Pt hoành độ giao điểm nha bạn rồi thay x =4 vào giải nghiệm theo m là tìm ra m

Nguyễn Duy Khánh
Xem chi tiết
ngọc linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 7 2023 lúc 20:41

a: F(-1)=1/2(-1)^2=1/2

=>A(-1;1/2)

f(2)=1/2*2^2=2

=>B(2;2)

Theo đề, ta có hệ:

-m+n=1/2 và 2m+n=2

=>m=1/2 và n=1

b: O(0;0); A(-1;0,5); B(2;2)

\(OA=\sqrt{\left(-1-0\right)^2+0,5^2}=\dfrac{\sqrt{5}}{2}\)

\(OB=\sqrt{2^2+2^2}=2\sqrt{2}\)

\(AB=\sqrt{\left(2+1\right)^2+\left(2-0,5\right)^2}=\dfrac{3}{2}\sqrt{5}\)

\(cosO=\dfrac{OA^2+OB^2-AB^2}{2\cdot OA\cdot OB}=\dfrac{-1}{\sqrt{10}}\)

=>\(sinO=\dfrac{3}{\sqrt{10}}\)

\(S_{OAB}=\dfrac{1}{2}\cdot\dfrac{\sqrt{5}}{2}\cdot2\sqrt{2}\cdot\dfrac{3}{\sqrt{10}}=\dfrac{3}{2}\)

=>\(OH=\dfrac{2\cdot\dfrac{3}{2}}{\dfrac{3}{2}\sqrt{5}}=\dfrac{2\sqrt{5}}{5}\)

Tống Đức Lương
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 3 2023 lúc 11:01

a: 

loading...

b: PTHĐGĐ là:

2x^2-(2m-2)x+m-1=0

Δ=(2m-2)^2-4*2*(m-1)

=4m^2-8m+4-8m+8

=4m^2-16m+12

=4m^2-2*2m*4+16-4=(2m-4)^2-4=(2m-6)(2m-2)

Để (d) cắt (P) tại 2 điểm pb thì (2m-6)(2m-2)>0

=>m>3 hoặc m<1

Nguyễn Châu Mỹ Linh
Xem chi tiết