Cho hình chóp S.ABC có SC = 2a và S C ⊥ A B C , ∆ A B C vuông cân tại B , A B = 2 a Gọi D, E lần lượt là hình chiếu vuông góc của C lên SA, SB. Thể tích khối chóp S.CDE bằng
A. 4 a 3 9
B. 2 a 3 3
C. 2 a 3 9
D. a 3 3
Cho hình chóp S.ABC có SA, SB, SC đôi một vuông góc với nhau và SA = SB = SC = a . Gọi B′,C′ lần lượt là hình chiếu vuông góc của S trên AB,AC. Tính thể tích hình chóp S.AB′C′.
A. a 3 2
B. a 3 6
C. a 3 24
D. a 3 12
Cho hình chóp tam giác đều S.ABC có AC = SC = 8 cm , SH = 6,93 cm ,S tam giác ABC = 27,72 cm2
a) Cho biết độ dài trung đoạn của hình chóp S.ABC.
b) Tính diện tích xung quanh và diện tích toàn phần của hình chóp S.ABC.
c) Tính thể tích của hình chóp tam giác đều S.ABC biết chiều cao của hình chóp là 7,5 cm
a) Độ dài trung đoạn của hình chóp S.ABC là độ dài đoạn thẳng từ trung điểm của cạnh đáy đến đỉnh của hình chóp. Vì tam giác ABC là tam giác đều, nên ta có thể tính độ dài trung đoạn bằng cách sử dụng công thức Pythagoras: Trung đoạn = căn bậc hai của (AC^2 - (AC/2)^2) = căn bậc hai của (8^2 - (8/2)^2) = căn bậc hai của (64 - 16) = căn bậc hai của 48 = 4 căn 3 cm
b) Diện tích xung quanh của hình chóp S.ABC là tổng diện tích các mặt bên của hình chóp. Vì tam giác ABC là tam giác đều, nên diện tích mặt bên của hình chóp là diện tích tam giác đều. Ta có công thức tính diện tích tam giác đều: Diện tích tam giác đều = (cạnh^2 * căn 3) / 4 = (8^2 * căn 3) / 4 = 16 căn 3 cm^2
Diện tích xung quanh = Diện tích tam giác đều + Diện tích đáy = 16 căn 3 + 27,72 = 16 căn 3 + 27,72 cm^2
Diện tích toàn phần của hình chóp là tổng diện tích xung quanh và diện tích đáy: Diện tích toàn phần = Diện tích xung quanh + Diện tích đáy = 16 căn 3 + 27,72 + 27,72 = 16 căn 3 + 55,44 cm^2
c) Thể tích của hình chóp tam giác đều S.ABC được tính bằng công thức: Thể tích = (Diện tích đáy * Chiều cao) / 3 = (27,72 * 7,5) / 3 = 69,3 cm^3
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, đỉnh S cách đều các điểm A,B,C. Biết AC = 2a,BC = a; góc giữa đường thẳng SB và mặt đáy (ABC) bằng 60 o . Tính theo a thể tích V của khối chóp S.ABC?
A. V = a 6 3 4 .
B. V = a 6 3 6 .
C. V = a 3 2 .
D. V = a 6 3 12 .
Đáp án C.
Hướng dẫn giải: Gọi H là trung điểm AC.
Do tam giác ABC vuông tại B nên H là tâm đường tròn ngoại tiếp tam giác ABC.
Đỉnh S cách đều các điểm A, B,C nên hình chiếu của S trên mặt đáy (ABC) trùng với tâm đường tròn ngoại tiếp tam giác ABC
suy ra S H ⊥ ( A B C )
Tam giác vuông SBH, có
Tam giác vuông ABC ,
có A B = A C 2 - B C 2 = a 3
Diện tích tam giác vuông
S ∆ A B C = 1 2 B A . B C = a 3 2 2
Vậy V S . A B C = 1 3 S ∆ A B C . S H = a 3 2
Cho hình chóp S.ABC, trên cạnh SB, SC, SC lần lượt lấy ba điểm A', B', C' sao cho S A = 2 S A ' , S B = 3 S B ' v à S C = 4 S C ' . Gọi V' và V lần lượt là thể tích của khối chóp S.A'B'C' và S.ABC . Khi đó tỉ số V ' V bằng bao nhiêu?
A. 12
B. 24
C. 1 24
D. 1 12
Cho hình chóp S.ABC, có đáy là tam giác vuông ở A, SC vuông góc với đáy, AC = a/2, SC = BC = a 2 . Mặt phẳng (P) qua C vuông góc với SB cắt SA, SB lần lượt tại A’, B’. Gọi V là thể tích hình chóp S.ABC, V’ là thể tích hình chóp S.A’B’C. Tính tỉ số k = V'/V.
A. k = 1 3
B. k = 2 4
C. k = 4 9
D. k = 2 3
Đáp án C
Do CS = CB nên B’ là trung điểm của SB.
Ta có:
iowhjeb h2ndb ewdnbw2hejwgbdwdwdhewdd
Trong không gian, cho hình chóp S.ABC có SA, AB, BC đôi một vuông góc với nhau và SA=a, SB=b, SC=c. Mặt cầu đi qua S, A, B, C có bán kính bằng
A. 2 ( a + b + c ) 3
B. a 2 + b 2 + c 2
C. 2 a 2 + b 2 + c 2
D. 1 2 a 2 + b 2 + c 2
Cho hình chóp S.ABC có đường cao SA = 2a, tam giác ABC vuông tại C, A B = 2 a , C A B ^ = 30 ° . Gọi H là hình chiếu của A trên SC , B' là điểm đối xứng của B qua mặt phẳng (SAC). Thể tích của khối chóp H.AB'B bằng
A. a 3 3 7
B. 6 a 3 3 7
C. 4 a 3 3 7
D. 2 a 3 3 7
Cho hình chóp tam giác S.ABC có SA=SB=SC= a 2 , tam giác ABC vuông cân tại A và BC=2a. Tính thể tích V của khối chóp S.ABC.
A. V = a 3 2
B. V = a 3 2 3
C. V = a 3
D. V = a 3 3
Đáp án D
Gọi H là trung điểm của BC.
Do tam giác ABC vuông cân tại A nên H là tâm đường tròn ngoại tiếp tam giác ABC.
Mặt khác do SA=SB=SC nên S thuộc trục đường tròn ngoại tiếp ABC
⇒ S H ⊥ A B C A H = B C 2 = a , S H = S A 2 - A H 2 = a A B = A C = B C 2 a 2
Thể tích khối chóp là
V = 1 3 . S H . 1 2 . A B . A C = a 3 3
Cho hình chóp S.ABC với SA⊥SB, SB⊥SC, SC⊥SA, S A = S B = S C = a . Gọi B′,C′ lần lượt là hình chiếu vuông góc của S trên AB,AC. Thể tích của hình chóp S.AB′C′ là
A. a 3 3
B. a 3
C. a 3 24
D. a 3 12
Đáp án C
Vì SA=SB=SC suy ra tam giác SAB và tam giác SAC cân tại S. Vậy B′,C′ lần lượt là trung điểm của AB,AC.
Ta có: