Biết tập hợp tất cả các giá trị của tham số m để bất phương trình 4 sin 2 x + 5 c os 2 x ≤ m . 7 c os 2 x có nghiệm là m ∈ a b ; + ∞ với a, b là các số nguyên dương và a b tối giản. Khi đó tổng bằng:
A. 13
B. 15
C. 9
D. 11
Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình m 2 x 4 - 16 + m x 2 - 4 - 28 x - 2 ≥ 0 đúng với mọi x ∈ R . Tổng giá trị của tất cả các phần tử thuộc S bằng
A. - 15 8
B. - 1
C. - 1 8
D. 7 8
Tìm tập hợp tất cả các giá trị của tham số m để bất phương trình 12 x + ( 2 - m ) 6 x + 3 x > 0 thỏa mãn với mọi x dương.
Cho phương trình sin x + m 2 3 + sin 2 x - m 2 3 = 2 sin x - m 2 3 . Gọi S = [a;b] là tập hợp tất cả các giá trị thực của tham số m để phương trình trên có nghiệm thực. Tìm giá trị của P = a 2 + b 2
A. P = 162 49
B. P = 49 162
C. P = 4
D. P = 2
Tìm tập hợp tất cả các giá trị của tham số m sao cho bất phương trình sau có nghiệm: x + 5 + 4 - x ≥ m
A. - ∞ ; 3
B. - ∞ ; 3
C. ( 3 2 ; + ∞ )
D. ( - ∞ ; 3 2 )
Tìm tập hợp tất cả các giá trị của tham số m sao cho bất phương trình sau có nghiệm: x + 5 + 4 − x ≥ m
A. − ∞ ; 3
B. − ∞ ; 3 2
C. 3 2 ; + ∞
D. − ∞ ; 3 2
Đáp án B
Điều kiện x + 5 ≥ 0 4 − x ≥ 0 ⇔ − 5 ≤ x ≤ 4
Xét hàm số f x = x + 5 + 4 − x ; x ∈ − 5 ; 4
Ta có:
f ' x = 1 2 x + 5 − 1 2 4 − x ; f ' x = 0 ⇔ 4 − x = x + 5 ⇔ x = − 1 2
Tính các giá trị f − 5 = 3 ; f 4 = 3 ; f − 1 2 = 3 2
⇒ max − 5 ; 4 f x = f − 1 2 = 3 2
Vậy để phương trình m ≤ f x có nghiệm m ≤ max − 5 ; 4 f x ⇔ m ≤ 3 2
Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình m 2 x 4 ≥ 1 + m x 2 ≥ 1 ≥ 6 x ≥ 1 - 0 đúng với mọi x ∈ R . Tổng giá trị của tất cả các phân tử thuộc S bằng
A. - 3 2
B. 1
C. - 1 2
D. 1 2
Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình m 2 x 4 - 1 + m x 2 - 1 - 6 x - 1 ≥ 0 đúng với mọi x ∈ R . Tổng giá trị của tất cả các phần tử thuộc S bằng
A. - 3 2
B. 1
C. - 1 2
D. 1 2
Nhận xét: Nếu x = 1 không là nghiệm của phương trình (1) thì x = 1 là nghiệm đơn của phương trình f(x) = 0 nên f(x) đổi dấu khi qua nghiệm x = 1.
Chọn C
Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình m 2 x 4 - 1 + m x 2 - 1 - 6 x - 1 ≥ 0 đúng với mọi x ∈ ℝ . Tổng giá trị của tất cả các phần tử thuộc S bằng
A. 3 2 .
B. 1.
C. - 1 2 .
D. 1 2 .
1.Bất phương trình (m2-3m)x+m<2-2x vô nghiệm khi:
a.m#1 b.m#2 c.m=2 d.=3
2.Gọi S là tập hợp tất cả các giá trị thực của tham số m để bất phương trình (m2-m)x +m<6x-2
GIUP MÌNH VỚI Ạ
Câu 2 bạn ghi thiếu đề
Câu 1:
\(\Leftrightarrow\left(m^2-3m\right)x+2x< 2-m\)
\(\Leftrightarrow\left(m^2-3m+2\right)x< 2-m\)
BPT đã cho vô nghiệm khi và chỉ khi:
\(\left\{{}\begin{matrix}m^2-3m+2=0\\2-m\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\\m\ge2\end{matrix}\right.\) \(\Rightarrow m=2\)
Gọi S là tập hợp tất cả các giá trị của tham số m để bất phương trình m2(x4 - 1) + m(x2 - 1) - 6(x - 1) ≥ 0 đúng với mọi x ∈ R. Tổng giá trị của tất cả các phần tử thuộc S bằng bao nhiêu ?
Lời giải:
$f(x)=m^2(x^4-1)+m(x^2-1)-6(x-1)=(x-1)[m^2(x+1)(x^2+1)+m(x+1)-6]$
Để $f(x)\geq 0$ với mọi $x\in\mathbb{R}$ thì:
$m^2(x+1)(x^2+1)+m(x+1)-6=Q(x)(x-1)^k$ với $k$ là số lẻ
$\Rightarrow h(x)=m^2(x+1)(x^2+1)+m(x+1)-6\vdots x-1$
$\Rightarrow h(1)=0$
$\Leftrightarrow 4m^2+2m-6=0$
$\Leftrightarrow 2m^2+m-3=0$
$\Leftrightarrow (m-1)(2m+3)=0\Rightarrow m=1$ hoặc $m=\frac{-3}{2}$
Thay các giá trị trên vào $f(x)$ ban đầu thì $m\in \left\{1; \frac{-3}{2}\right\}$
Tổng các giá trị của các phần tử thuộc $S$: $1+\frac{-3}{2}=\frac{-1}{2}$