viết phân thức sau dưới dạng 1 phân thức có tử là \(x^3-y^3\)
\(\dfrac{x-y}{x+y}\)
1.viết phân thức sau dưới dạng những phân thức có cùng mẫu thức
a) x^2 và x/x+1
b)x/2y và y/x
c)2x+y/x^3-y^3 và x+y/x
d)x+1/x^5.y^4 và 1-x/x^4.y^5
2.viết các phân thức sau dưới dạng những phân thức có cùng tử thức
a)1/x và x-2/x+3
b)x/y và y/x
c)x^2-y^2/2x^2 -xy và x+y/x
d)x^3.x^2/x-y và x^2.y^3/x+y
viết phân thức \(\frac{x^2+xy+y^2}{x-y}\)dưới dạng một phân thức bằng nó và có tử thức là \(^{x^3}\)-\(^{y^3}\)
\(\frac{x^2+xy+y^2}{x-y}=\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)^2}=\frac{x^3-y^3}{\left(x-y\right)^2}\)
\(\frac{x^2+xy+y^2}{x-y}\)
\(=\frac{\left(x-y\right)\left(x^2+xy+y^2\right)}{\left(x-y\right)^2}\)
\(=\frac{x^3-y^3}{x^2-2xy+y^2}\)
Với x ≠ y, hãy viết phân thức 1 x − y dưới dạng phân thức có tử là x 2 - y 2 ?
A. x 2 − y 2 (x − y)y 2
B. x 2 − y 2 x + y
C. x 2 − y 2 x − y
D. x 2 − y 2 (x − y) 2 (x + y)
viết cấc biểu thức sau dưới dạng những phân thúc có cùng tử: x+y/x và x^2-xy+y^2
Câu 17. a) Phân tích đa thức sau thành nhân tử: a) 5(x - y) - 3x(y - x)
b) Viết biểu thức sau dưới dạng bình phương của một hiệu:x2 - 4xy + 4y2
c) Tìm x biết: (x – 1)2 + x(5– x) = 0
\(a,5\left(x-y\right)-3x\left(y-x\right)=5\left(x-y\right)+3x\left(x-y\right)=\left(5+3x\right)\left(x-y\right)\\ b,x^2-4xy+4y^2=\left(x-2y\right)^2\\ c,\left(x+1\right)^2+x\left(5-x\right)=0\\ \Rightarrow x^2+2x+1+5x-x^2=0\\ \Rightarrow7x+1=0\\ \Rightarrow7x=-1\\ \Rightarrow x=-\dfrac{1}{7}\)
a: =(x-y)(5+3x)
c: \(\Leftrightarrow x^2-2x+1+5x-x^2=0\)
hay x=-1/3
Viết các phân thức sau thành các phân thức cùng mẫu:
1) \(\dfrac{2x-1}{x-2}\)và\(\dfrac{x+y}{2-x}\)
2) \(\dfrac{-y}{y-4}\)và\(\dfrac{y-x}{4-y}\)
\(\dfrac{x+y}{2-x}=\dfrac{-\left(x+y\right)}{x-2}\)
\(\dfrac{-y}{y-4}=\dfrac{--y}{4-y}=\dfrac{y}{4-y}\)
Viết các biểu thức sau dưới dạng đa thức thu gọn
a) \((x^3+x^2y+xy^2+y^3)(x-y)\)
b) (2x - 1)(x+3)
Hướng dẫn: Áp dụng tính chất phân phối
Lời giải:
a. $(x^3+x^2y+xy^2+y^3)(x-y)=[x^2(x+y)+y^2(x+y)](x-y)$
$=(x^2+y^2)(x+y)(x-y)=(x^2+y^2)(x^2-y^2)=x^4-y^4$
b.
$(2x-1)(x+3)=2x(x+3)-(x+3)=2x^2+6x-x-3=2x^2+5x-3$
Viết mỗi phân thức sau dưới dạng tổng quát của một đa thức và một phân thức với tử thức là một hằng số, rồi tìm các giá trị nguyên của x để giá trị của phân thức cũng là số nguyên :
a) \(\dfrac{3x^2-4x-17}{x+2}\)
b) \(\dfrac{x^2-x+2}{x-3}\)
a)Ta có:
Để phân thức là số nguyên thì phải là số nguyên (với giá trị nguyên của x).
nguyên thì x +2 phải là ước của 3.
Các ước của 3 là . Do đó
Vậy
Cách khác:
=
Kết quả phân tích đa thức x2 + 2xy + y2 – 9x – 9y thành nhân tử là :
A.( x + y + 3) ( x + y – 3) (x + y )
B.( x + y – 9) (x + y )
C. ( x + y – 3) (x + y )
D. ( x – y – 9) (x – y )
Phân tích đa thức sau thành nhân tử : x2 -x-y2 -y, ta được kết quả là: A. (x+y)(x-y-1) B. (x-y)(x+y+1) C.(x+y)(x+y-1) D.(x-y)(x+y-1)
Phân tích đa thức sau thành nhân tử : x2 -4x-y2 +4 ta được kết quả là:
A .(x+2-y)(x+2+y)
B. (x-y+2)(x+y-2)
C. (x-2-y)(x-2+y)
D.(x-y-2)(x-y+2)
Đa thức 25 – a2 + 2ab + b2 + được phân tích thành:
A. (5 + a – b)(5 – a – b)
B. (5 + a + b)(5 – a – b)
C. (5 + a + b)(5 – a + b)
D. (5 + a – b)(5 – a + b)