Cho a,b,c là các số thực sao cho phương trình z 3 + a z 2 + b z + c = 0 có ba nghiệm phức lần lượt là z 1 = ω + 3 i ; z 2 = ω + 9 i ; z 3 = 2 ω - 4 , trong đó ω là một số phức nào đó. Tính giá trị của P=|a+b+c|.
A. P=36
B. P=136
C. P=208
D. P=84
Cho phương trình z 3 + a z 2 + b z + c = 0 . Nếu z = 1 − i và z = 1 là hai nghiệm của phương trình thì a − b − c bằng (a, b, c là số thực).
A. 2
B. 3
C. 5
D. 6
1, Cho a,b, c là các số thực dương thỏa mãn a + b + c = 5 . Tìm giá trị nhỏ nhất của biểu thức P=a/(ab+5c) + b/(bc+5a)+ c/(ca+5b )
2, giải phương trình : 5/x^2 + 2x/√(x^2+5) =1
3,Cho x,y, z là các số thực dương thỏa mãn x + y + z = 1. CMr : (1-x^2)/(x+yz)+(1-y^2)/(y+xz)+(1-z^2)/(z+xy) ≥6
Cho a,b,c là các số thực # 0. Tìm x,y,z là số thực # 0 thỏa mãn x*y/a*y+b*x=y*z/b*z+c*y=z*x/c*x+a*z=(x^2+y^2+z^2)/(a^2+b^2+c^2)
cho a,b,c là các số thực # 0. Tìm các số thực x,y,z #0 thỏa mãn: x*y/a*y+b*x=y*z/b*z+c*y=z*x/c*x+a*z=(x^2+y^2+z^2)/(a^2+b^2+c^2)
Tìm các số thực a,b,c để phương trình (ẩn z) z 3 + a z 2 + b z + c = 0 nhận z = 1 + i và z = 2 làm nghiệm
1, Cho a,b, c là các số thực dương thỏa mãn a + b + c = 5 . Tìm giá trị nhỏ nhất của biểu thức P=a/(ab+5c) + b/(bc+5a)+ c/(ca+5b )
2, giải phương trình : 5/x^2 + 2x/√(x^2+5) =1
3,Cho x,y, z là các số thực dương thỏa mãn x + y + z = 1. CMr : (1-x^2)/(x+yz)+(1-y^2)/(y+xz)+(1-z^2)/(z+xy) ≥6
Ai tra loi dung se co qua dac biet .Amazing
cho a,b,c là các số thực khác 0. Tìm các số thực x,y,z khác 0 sao cho:
xy/ay+bx = yz/bz+cy = zx/cx+ã = x^2+y^2+z^2/a^2+b^2+c^2
`Answer:`
\(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+ax}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(1\right)\)
Theo đề ra, có: \(\frac{xy}{ay+bx}=\frac{yz}{bz+cy}=\frac{zx}{cx+az}\)
\(\Rightarrow\frac{xyz}{ayz+bxz}=\frac{xyz}{bxz+cxy}=\frac{xyz}{cxy+ayz}\)
\(\Rightarrow ayz+bxz=bxz+cxy=cxy+ayz\)
\(\Rightarrow\hept{\begin{cases}ayz+bxz=bxz+cxy\\ayz+bxz=cxy+ayz\\bxz+cxy=cxy+ayz\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}ayz=cxy\\bxz=cxy\\bxz=ayz\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}az=cx\\bz=cy\\bx=ay\end{cases}}\left(2\right)\)
Thế (2) và (1): \(\frac{xy}{2ay}=\frac{yz}{2bz}=\frac{xz}{2cx}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\)
\(\Rightarrow\frac{x}{2a}=\frac{y}{2b}=\frac{z}{2c}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}\left(3\right)\)
\(\Rightarrow\frac{x^2}{4a^2}=\frac{y^2}{4b^2}=\frac{z^2}{4c^2}=\frac{\left(x^2+y^2+z^2\right)^2}{\left(a^2+b^2+c^2\right)^2}=\frac{x^2+y^2+z^2}{4a^2+4b^2+4c^2}\)
\(\Rightarrow\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=\frac{1}{4}\)
Thế (3) vào (2): \(\frac{x}{2a}=\frac{y}{2b}=\frac{z}{2c}=\frac{1}{4}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{a}{2}\\y=\frac{b}{2}\\z=\frac{c}{2}\end{cases}}\)
Cho phương trình z 3 + a z 2 + b z + c = 0 nhận z = 2 và z = 1 + i làm các nghiệm của phương trình. Khi đó a - b + c là
Cho x,y,z,a,b,c là các số thực thay đổi thỏa mãn ( x + 3 ) 2 + ( y - 2 ) 2 + ( z + 1 ) 2 = 2 và a+b+c=1. Giá trị nhỏ nhất của biểu thức P = ( x - a ) 2 + ( y - b ) 2 + ( z - c ) 2 là
A. 3 - 2
B. 3 + 2
C. 5 - 2 6
D. 5 + 2 6
a) Cho x, y, z là 3 số dương. CMR có tam giác mà các cạnh của nó có độ dài là a, b, c với: a=x+y; b=y+z; c=z+x.
b) Cho a, b, c là các độ dài 3 cạnh của một tam giác. CMR có các số dương x, y, z sao cho: a=x+y; b=y+z; c=z+x.
a) Vì x,y,z>0 nên a,b,c>0 (1)
Ta có: a+b-c=x+y+y+z-z-x=2y>0
=> a+b>c. Tương tự ta có b+c>a, c+a>b (2)
Từ (1) và (2) => Tồn tại tam giác mà các cạnh của nó có độ dài 3 cạnh là a,b,c
b) Vì a,b,c là độ dài 3 cạnh của 1 tam giác nên ta có a+b>c hay x+y+y+z>z+x => y>0
Tương tự: z,x>0
Vậy có các số dương x,y,z tm