Cho tích phân ∫ - 1 1 d x 1 + x + 1 + x 2 = a . Tính S = a i 2016 + a i 2000 Chọn đáp án đúng:
A. 3
B. 2
C. 0
D. 1
· Câu 7:Phân tích x3(x2 – 1) - (x2 – 1) thành nhân tử ta được:
o A. (x + 1)3(x + 1)
o B. (x – 1)(x + 1)(x2 + x + 1)
o C. (x – 1)2(x + 1)(x2 – x + 1)
o D. (x – 1)2(x + 1)(x2 + x + 1)
· Câu 8:(x + 3)2 – 25 được phân tích thành nhân tử là:
o A. (x – 8)(x – 2)
o B. (x – 8)(x + 2)
o C. (x + 8)(x + 2)
o D. (x + 8)(x – 2)
· Câu 9:
Giá trị của biểu thức A = x2 – y2 + 2y – 1 với x = 75; y = 26 là:
o A. – 5000
o B. 5000
o C. 6500
o D. – 6500
· Câu 10:
Tìm x biết 2x2 – x – 1 = 0 ta được:
o A. x = - 1 hoặc x = -1/2
o B. x = 1 hoặc x = -1/2
o C. x = - 1 hoặc x = 1/2
· Câu 11:
Giá trị của biểu thức 4(x + y)2 – 9(x – y)2 với x = 2; y = 4 là:
o A. 118
o B. 108
o C. 78
o D. 98
· Câu 12:
Đa thức 49(y – 4)2– 9(y + 2)2 được phân tích thành nhân tử là:
o A. 2(5y + 11)(4y – 24)
o B. 2(5y – 11)(4y + 24)
o C. 2(5y – 11)(4y – 34)
o D. 2(5y + 11)(4y + 34)
· Câu 13:
Đa thức 9x6 + 24x3y2 + 16y2 được phân tích thành nhân tử là:
o A. (3x3 – 4y2)2
o B. (3x3 + 4y2)2
o C. (3y3 – 2x2)2
o D. - (3x3 + 4y2)2
· Câu 14:
Đa thức 36 – 12x + x2 được phân tích thành nhân tử là:
o A. (6 – x)2
o B. (6 + x)2
o C. (6 + x)3
o D. (6 – x)3
\(7,D\\ 8,D\\ 9,B\\ 10,B\\ 11,B\\ 12,C\\ 13,B\\ 14,A\)
Phân tích đa thức 8𝑥 3 -1 thành nhân tử
A.(2𝑥 − 1)(4𝑥 2+2x+1)
B.(2𝑥 + 1)(4𝑥 2+2x+1)
C.(2𝑥 − 1)(4𝑥 2 - 2x+1)
D.(2𝑥 − 1)(4𝑥 2+4x+1)
Câu 17 Phân tích đa thức 5x2 -4x +10xy-8y thành nhân tử
A..(5x-4)(x-2y)
B. (x+2y)(5x-4)
C.(5x-2y)(x+4y)
D.(5x+4)(x-2y)
Câu 18 Phân tích đa thức 8x3 + 12x2y + 6xy2 + y3 thành nhân tử :
A. (2x + y)3
B.(2x - y)3
C. (2x + y3 ) 3
D. (2x3 + y)3
Câu 19 Tìm x, biết (x + 2) . ( x – 1 ) – x 2 = –1
A. x = –2 4
B. x = 2
C. x = 1
D. x = –1
Câu 20 Tìm x biết x . ( x – 3) = x2 + 6
A. x = 2
B. x = –2
C. x = 4
D. x = 6
Câu 21 Tìm x biết : (𝑥 + 3)(𝑥 − 3) − 𝑥(𝑥 − 3) =0
A. x = 3.
B. x= -3
C. x=1
D. x=0
\(16,A\\ 17,C\\ 18,A\\ 19,C\\ 20,A\\ 21,A\)
Cho đường thẳng (d): y = x - 1 và parabol (P): y = x² + (2m + 1) - 3m² - 1 . Tim m để (d) cắt (P) tại hai điểm phân biệt A và B sao cho tam giác OAB có diện tích bằng 6
Đa thức x 2 – 1 được phân tích thành nhân tử là:
A. (x – 1)(x + 1)
B. (x + 1)(x +1)
C. (- x – 1)(x +1)
D. x(x – 1)
1)Rút gọn biểu thức:B=\(\left(x-\dfrac{x}{x+1}\right)\)-\(\left(1-\dfrac{x}{x+1}\right)\)
2)Phân tích đa thức thành nhân tử: (x-1)2-25
3)Cho đường thẳng (d)có phương trình: y=2x+2m-2. Tìm m để đường thẳng (d) đi qua điểm A(-2;2), khi đó hãy vẽ đường thẳng (d)trong mặt phẳng tọa độ Oxy.
`B=(x-x/(x+1))-(1-x/(x+1))`
`đkxđ:x ne +-1`
`=((x^2+x-x)/(x+1))-(x+1-x)/(x+1)`
`=x^2/(x+1)-1/(x+1)`
`=(x^2-1)/(x+1)`
`=((x-1)(x+1))/(x+1)`
`=x-1`
`2)(x-1)^2-25`
`=(x-1)^2-5^2`
`=(x-1-5)(x-1+5)`
`=(x-6)(x+4)`
Bài 1:
Ta có: \(B=\left(x-\dfrac{x}{x+1}\right)-\left(1-\dfrac{x}{x+1}\right)\)
\(=\left(\dfrac{x\left(x+1\right)-x}{x+1}\right)-\left(\dfrac{x+1-x}{x+1}\right)\)
\(=\dfrac{x^2+x-x-\left(x+1-x\right)}{x+1}\)
\(=\dfrac{x^2-1}{x+1}=x-1\)
Bài 2:
Ta có: \(\left(x-1\right)^2-25\)
\(=\left(x-1-5\right)\left(x-1+5\right)\)
\(=\left(x-6\right)\left(x+4\right)\)
Khi phân tích đa thức x2 + x thành nhân tử ta được A x.x+1 B x(x+1) C (x+1)(x-1) D x.x
Phân tích đa thức x2 – xy + x – y thành nhân tử là
A. (x – y)(x + 1)
B. x(x – y)
C. xy(x + 1)
D. (x + y)(x – 1)
bài 1 : phân tích đa thức thành nhân tử
a/ 2x2 (x – 1) + 4x (1 – x) b/ x4 – 27x c/ x2 – 4x + 3 d / x4 + x2 + 1
b: \(=x\left(x-3\right)\left(x^2+3x+9\right)\)
a/ 2x^2 (x – 1) + 4x (1 – x)
= 2x^2(x – 1) – 4x (x – 1)
= (x – 1)( 2x^2 – 4x)
=2x(x – 1)(x – 2)
phân tích đa thức x mũ 2+4x+3 thành nhân tử ta được :
A : (x + 1)(x + 3)
B : (x + 1)(x - 4)
C : (x - 1)(x - 3)
D : (x - 1)(x + 4)
3A. Tính giá trị biểu thức: a) A = (x²-3x² + 3x)² -2(x²-3x² + 3x)+1 tại x= 11; b) B=(x-2y)(x² + 2xy + 4y²)-6xy(x-2y) tai x=3;y=; 5A. Phân tích đa thức thành nhân tử a) x² +1-2x²; c) y²-4x² + 4x-1; b)x²-y²-5y+5x; d) x (2+x)²-(x+2)+1-x² 6A. Phân tích đa thức thành nhân tử: (a) x² −8x+7; b) 2x² -5x+2; c) x²-5x² +8x-4; d) x² +64.