Làm tính nhân:
a) 3x mũ 3 (2x mũ 2 - 7x + 2)
b) (2x mũ 2 - 3x) (2x +3)
tính nghiệm x) 1 mũ 2 -9x+8 2)3x mũ 2 -7x+4 3)2x mũ 2+5x-7 4) 3x mũ 2-9x+6 5)x mũ 2 +2x-3
1: x^2-9x+8=0
=>(x-1)(x-8)=0
=>x=1 hoặc x=8
2: 3x^2-7x+4=0
=>3x^2-3x-4x+4=0
=>(x-1)(3x-4)=0
=>x=4/3 hoặc x=1
3: 2x^2+5x-7=0
=>(2x+7)(x-1)=0
=>x=1 hoặc x=-7/2
4: 3x^2-9x+6=0
=>x^2-3x+2=0
=>x=1 hoặc x=2
5: x^2+2x-3=0
=>(x+3)(x-1)=0
=>x=-3 hoặc x=1
`@` `\text {Answer}`
`\downarrow`
`1)`
\(x^2 - 9x + 8?\)
\(x^2-9x+8=0\)
`<=>`\(x^2-8x-x+8=0\)
`<=> (x^2 - 8x) - (x - 8) = 0`
`<=> x(x - 8) - (x-8) = 0`
`<=> (x-1)(x-8) = 0`
`<=>`\(\left[{}\begin{matrix}x-1=0\\x-8=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {1; 8}`
`2)`
\(3x^2 - 7x + 4 =0\)
`<=> 3x^2 - 3x - 4x + 4 = 0`
`<=> (3x^2 - 3x) - (4x - 4) = 0`
`<=> 3x(x - 1) - 4(x - 1) = 0`
`<=> (3x - 4)(x-1) = 0`
`<=>`\(\left[{}\begin{matrix}3x-4=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}3x=4\\x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {4/3; 1}`
`3)`
\(2x^2 + 5x - 7=0\)
`<=> 2x^2 - 2x + 7x - 7 = 0`
`<=> (2x^2 - 2x) + (7x - 7) = 0`
`<=> 2x(x - 1) + 7(x - 1) = 0`
`<=> (2x+7)(x-1) = 0`
`<=>`\(\left[{}\begin{matrix}2x+7=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}2x=-7\\x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {-7/2; 1}.`
`4)`
\(3x^2 - 9x + 6 = 0\)
`<=> 3x^2 - 3x - 6x + 6 = 0`
`<=> (3x^2 - 3x) - (6x - 6) = 0`
`<=> 3x(x - 1) - 6(x - 1) = 0`
`<=> (3x - 6)(x - 1) = 0`
`<=>`\(\left[{}\begin{matrix}3x-6=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}3x=6\\x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {1; 2}.`
`5)`
\(x^2 + 2x - 3=0\)
`<=> x^2 + 3x - x - 3 = 0`
`<=> (x^2 - x) + (3x - 3) = 0`
`<=> x(x - 1) + 3(x - 1) = 0`
`<=> (x+3)(x-1) = 0`
`<=>`\(\left[{}\begin{matrix}x+3=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {1; -3}.`
làm phép tính chia
n, ( 2 + x + 8x mũ 3 - 2x mũ 2 ) : ( 2x + 1 )
r, ( 8x - 5 - 3x mũ 3 - 3x mũ 2 + x mũ 4 ) : ( x - 1 )
a, ( x mũ 3 + 2 + x ) : ( x + 1 )
b, ( x mũ 4 + 3x + 1 + 3x mũ 3 ) : ( x mũ 2 + 1 )
Sắp xếp các đa thức sau theo bậc lũy thừa tăng rồi tìm bậc của mỗi đa thức sau khi thu gọn và chỉ ra hệ số khác 0 của mỗi đa thức.
A(x)=4x mũ 3 - 2x mũ 2 +6x -5x mũ 3 +4x mũ 2 - 10x - 4.
R(x)= -x mũ 2 + 3x mũ 4 + 3x - 2x mũ 4 + 9x mũ 5 - 6x mũ 2 - 5.
Q(x)= 9 + 5x mũ 2 - 3x mũ 3 + 6x mũ 2 + 7x mũ 3 - 4x mũ 5 -6.
B(x)= 4x mũ 3 - 2x + 5x mũ 3 - 7x + 2 x mũ 2 + 10x - 2x mũ 3 + 8.
Giải giùm em với mọi người ơi!!
bài 1; sắp sếp các đa thức sau theo luỹ thừa giảm dần của biến và thực hiện phép tính chia
a, ( 6x - 5x mũ 2 - 15 + 2x mũ 3 ) : ( 2x - 5 )
b, ( x mũ 3 + 2x mũ 4 - 5x mũ 2 - 3 - 3x ) : ( x mũ 2 - 3 )
c, ( 5x mũ 2 + 15 - 3x mũ 2 - 9x ) : ( 5 - 3x )
d, ( x mũ 3 + x mũ 5 + x mũ 2 + 1 ) : ( x mũ 3 + 1 )
e, ( 3 - 2x + 2x mũ 3 + 5x mũ 2 ) : ( 2x mũ 2 - x + 1 )
a, -5x +7x -3x -2x tại x+-1/2
b, -4 x mũ 2 - 3x mũ 2 = 2x mũ 2 - x mũ 2 tại x +-1/2
a:
Sửa đề: tại x=-1/2
Đặt A=-5x+7x-3x-2x
=x(-5+7-3-2)
=-3x
Thay \(x=-\dfrac{1}{2}\) vào A, ta được:
\(A=-3x\cdot\dfrac{-1}{2}=\dfrac{3}{2}\)
b: Sửa đề: \(-4x^2-3x^2+2x^2-x^2\); tại x=-1/2
Đặt \(B=-4x^2-3x^2+2x^2-x^2\)
\(=x^2\left(-4-3+2-1\right)=-6x^2\)
Thay x=-1/2 vào B, ta được:
\(B=-6\cdot\left(-\dfrac{1}{2}\right)^2=-6\cdot\dfrac{1}{4}=-\dfrac{6}{4}=-\dfrac{3}{2}\)
bài 2 ; làm tính chia
a, ( x mũ 3 + 6x mũ 2 + 2x - 3 ) : ( x mũ 2 + 5x - 3 )
b, ( x mũ 3 - 3x mũ 2 + x - 3 ) : ( x - 3 )
c, ( x mũ 2 + 3x - 10 ) : ( x - 2 )
d, ( 2x mũ 3 + x mũ 2 - 5x + 2 ) : ( x mũ 2 + x - 2 )
e, ( x mũ 3 + 2 + x ) : ( x + 1 )
P= 4x mũ 3 - 7x mũ 2 + 3x - 12
Q= -2x mũ 3 +2x mũ 2 + 12 + 5x mũ 2 + 9x
Tính P + Q và 2P - QTìm nghiệm của P + Qbài 2; làm tính chia
a, ( x mũ 3 + 6x mũ 2 + 2x - 3 ) : ( x mũ 2 + 5x - 3 )
b, ( x mũ 3 - 3 x mũ 2 + x - 3 ) : ( x - 3 )
a, ( x mũ 2 + 3x - 10 ) : ( x - 2 )
b, ( 2x mũ 3 + x mũ 2 - 5x + 2 ) : ( x mũ 2 + x - 2 )
sắp xếp các đa thức sau theo luỹ thừa giảm dần của biến rồi thực hiện phép tính chia
b, ( 6x - 5x mũ 2 - 15 + 2x mũ 3 ) : ( 2x - 5 )
c, ( x mũ 3 + x mũ 5 + x mũ 2 + 1 ) : ( x mũ 3 + 1 )
d, ( 3 - 2x + 2x mũ 3 + 5x mũ 2 ) : ( 2x mũ 2 - x + 1 )
e, ( - 3x mũ 3 + 3x + x mũ 4 + x mũ 2 ) : ( x mũ 2 - 2x + 3 )