Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: x-2y+1=0. Nếu đường thẳng ∆ qua điểm M (1;-1) và ∆ song song với d thì ∆ có phương trình là:
Trong mặt phẳng tọa độ Oxy, cho đường thẳng d: x-2y+1=0. Nếu đường thẳng ∆ qua điểm M (1;-1) và ∆ song song với d thì ∆ có phương trình là
A. x-2y+3=0
B. x-2y-3=0
C. x-2y+5=0
D. x+2y+1=0
Trong mặt phẳng tọa độ Oxy, đường thẳng đi qua điểm M(1;2) và vuông góc với đường thẳng d: 4x+2y+1=0 có phương trình tổng quát là
A. 4x-2y+3=0
B. 2x-4y+4=0
C. 2x-4y-6=0
D. x-2y+3=0
Trong mặt phẳng tọa độ Oxy cho điểm D(6;2) và hai đường thẳng (d1): x-2y+1=0; (d2): x+2y-3=0. Viết phương trình đường thẳng \(\left(\Delta\right)\) đi qua D và cắt hai đường thẳng (d1); (d2) tại hai điểm B; C sao cho tam giác tạo bởi ba đường thẳng (d1); (d2); \(\left(\Delta\right)\) là tam giác cân, với BC là cạnh đáy.
Trong mặt phẳng tọa độ Oxy, cho đường tròn ( C ) : x - 4 2 + y - 3 2 = 5 và đường thẳng d: x+2y-5=0. Tọa độ tiếp điểm M của đường thẳng d và đường tròn (C) là
A. M(3;1)
B. M(6;4)
C. M(5;0)
D. M(1;2)
Trong mặt phẳng tọa độ Oxy cho đường thẳng d: x - 2y + 2 = 0 và A(0;6), B(2;5). Tìm tọa độ điểm M trên đường thẳng d sao cho MA + MB nhỏ nhất
Cách 1:
Do M thuộc d, gọi tọa độ M có dạng \(M\left(2m-2;m\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(2m-2;m-6\right)\\\overrightarrow{BM}=\left(2m-4;m-5\right)\end{matrix}\right.\)
Đặt \(T=MA+MB=\sqrt{\left(2m-2\right)^2+\left(m-6\right)^2}+\sqrt{\left(2m-4\right)^2+\left(m-5\right)^2}\)
\(T=\sqrt{5m^2-20m+40}+\sqrt{5m^2-26m+41}\)
\(T=\sqrt{5\left(m-2\right)^2+\left(2\sqrt{5}\right)^2}+\sqrt{5\left(\dfrac{13}{5}-m\right)^2+\left(\dfrac{6}{\sqrt{5}}\right)^2}\)
\(T\ge\sqrt{5\left(m-2+\dfrac{13}{5}-m\right)^2+\left(2\sqrt{5}+\dfrac{6}{\sqrt{5}}\right)^2}=\sqrt{53}\)
Dấu "=" xảy ra khi và chỉ khi:
\(6\left(m-2\right)=10\left(\dfrac{13}{5}-m\right)\Leftrightarrow m=\dfrac{19}{8}\)
\(\Rightarrow M\left(\dfrac{11}{4};\dfrac{19}{8}\right)\)
Cách 2:
Thay tọa độ A và B vào pt (d) được 2 giá trị cùng dấu âm \(\Rightarrow A;B\) nằm cùng phía so với (d)
Gọi d' là đường thẳng qua A và vuông góc với d \(\Rightarrow\) pt d' có dạng:
\(2\left(x-0\right)+1\left(y-6\right)=0\Leftrightarrow2x+y-6=0\)
Gọi C là giao điểm của d và d' \(\Rightarrow\left\{{}\begin{matrix}x-2y+2=0\\2x+y-6=0\end{matrix}\right.\)
\(\Rightarrow C\left(2;2\right)\)
Gọi D là điểm đối xứng với A qua d \(\Leftrightarrow C\) là trung điểm AD \(\Rightarrow D\left(4;-2\right)\)
Phương trình BD có dạng: \(7\left(x-2\right)+2\left(y-5\right)=0\Leftrightarrow7x+2y-24=0\)
\(MA+MB\) nhỏ nhất khi và chỉ khi M là giao điểm của BD
\(\Rightarrow\) Tọa độ M thỏa mãn: \(\left\{{}\begin{matrix}7x+2y-24=0\\x-2y+2=0\end{matrix}\right.\) \(\Rightarrow M\left(\dfrac{11}{4};\dfrac{19}{8}\right)\)
Trong mặt phẳng tọa độ Oxy, đường thẳng đi qua điểm M 1 ; 2 và vuông góc với đường thẳng d : 4 x + 2 y + 1 = 0 có phương trình tổng quát là
A. 4 x - 2 y + 3 = 0
B. 2 x - 4 y + 4 = 0
C. 2 x - 4 y - 6 = 0
D. x - 2 y + 3 = 0
Trong mặt phẳng với hệ tọa độ Oxy. Cho đường tròn (C) : x2+ y2- 4x -2y -1= 0 và đường thẳng d: x+ y+1= 0. Tìm những điểm M thuộc đường thẳng d sao cho từ điểm M kẻ được đến (C) hai tiếp tuyến hợp với nhau góc 900.
Đáp án A
- Do M thuộc d suy ra M( t; -1-t).
Nếu 2 tiếp tuyến vuông góc với nhau thì MAIB là hình vuông
(A; B là 2 tiếp điểm).
Do đó:
- Ta có :
- Do đó : 2t2+ 8= 12
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng ∆ : x - 1 2 = y - 1 1 = z - 1 - 1 và mặt phẳng P : x+y+z-3=0. Gọi d là đường thẳng nằm trong (P), đi qua giao điểm của Δ và (P), đồng thời vuông góc với Δ. Giao điểm của đường thẳng d với mặt phẳng tọa độ (Oxy) là
A. M(2;2;0)
B. M(-3;2;0)
C. M(-1;4;0)
D. M(-3;4;0)
trong mặt phẳng tọa độ Oxy cho điểm E(3;4), đường thẳng d : x + y - 1 = 0 và đường tròn (C) : x2 + y2 + 4x - 2y - 4 = 0 . Gọi M (m;1-m) là điểm nằm trên đường thẳng d và nằm ngoài đường tròn (C), từ M kẻ các tiếp tuyến MA, MB tới đường tròn (C), với A,B là các tiếp điểm. Gọi (E) là đường tròn tâm E và tiếp xúc với đường thẳng AB. Khi đường tròn (E) có chu vi lớn nhất. Tìm tọa độ điểm M
(C): x^2+y^2+4x-2y-4=0
=>(x+2)^2+(y-1)^2=9
=>I(-2;1); R=3
M thuộc d nên M(a;1-a)
M nằm ngoài (C) nên IM>R
=>IM^2>9
=>2a^2+4a-5>0
MA^2=MB^2=IM^2-IA^2=(a+2)^2+(-a)^2-9=2a^2+4a-5
=>x^2+y^2-2ax+2(a-1)y-6a+6=0(1)
A,B thuộc (C)
=>Tọa độ A,B thỏa mãn phương trình:
x^2+y^2+4x-2y-4=0(2)
(1)-(2)=(a+2)x-ay+3a-5=0(3)
Tọa độ A,B thỏa mãn (3) nên (3) chính là phương trình đường thẳng AB
(E) tiếp xúc AB nên (E): R1=d(E,AB)
Chu vi của (E) lớn nhất khi R1 lớn nhất
=>d(E;AB) lớn nhất
Gọi H là hình chiếu vuông góc của E lên AB
=>d(E,Δ)=EH<=EK=căn 10/2
Dấu = xảy ra khi H trùng K
=>AB vuông góc EK
vecto EK=(-1/2;3/2), AB có VTCP là (a;a+2)
AB vuông góc EK
=>-1/2a+3/2(a+2)=0
=>a=-3
=>M(-3;4)