Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Camthe Thi
Xem chi tiết
Nguyễn Đức Anh
6 tháng 4 2020 lúc 15:01

hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

Khách vãng lai đã xóa
Phạm Mạnh Hùng
7 tháng 4 2020 lúc 11:24

,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

Khách vãng lai đã xóa
Phạm Anh Tuấn
12 tháng 4 2020 lúc 15:10

Mình không biết sin lỗi vạn

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
1 tháng 3 2019 lúc 18:01

Đáp án A.

Ta có:

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
8 tháng 3 2017 lúc 13:49

Đáp án A.

Ta có:   log π 6 log 3 x - 2 > 0 ⇔ 0 < log 3 x - 2 < 1 ⇔ x - 2 > 1 x - 2 < 3 ⇔ 3 < x < 5

Vậy S = 3 ; 5 ⇒ b - a = 2 .

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 3 2017 lúc 17:04

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
11 tháng 12 2018 lúc 16:15

Điều kiện:  x ≤ 2

Với điều kiện trên ,bất phương trình đã cho trở thành:

3- 2x < x  ⇔ - 3 x < - 3 ⇔ x > 1

Kết hợp điều kiện ta được:  1 < x ≤ 2

Tập nghiệm của bất phương trình  là S = (1; 2]

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 9 2019 lúc 6:26

Chọn D

Ta có:

Suy ra

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 3 2017 lúc 10:39

Hồ Văn Hùng
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
9 tháng 12 2019 lúc 16:30

Ta có :

2 x + 2 > 3 ( 2 - x ) + 1 ⇔ 2 x + 2 > 6 - 3 x + 1 ⇔ 5 x > 5 ⇔ x > 1 .

Vậy tập nghiệm của bất phương trình  2 x + 2 > 3 ( 2 - x ) + 1  là  1 ; + ∞ .

 

Đáp án là A.

DuaHaupro1
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 3 2022 lúc 22:10

\(\dfrac{x^2+x+3}{x^2-4}\ge1\Leftrightarrow\dfrac{x^2+x+3}{x^2-4}-1\ge0\)

\(\Leftrightarrow\dfrac{x+7}{x^2-4}\ge0\Rightarrow\left[{}\begin{matrix}-7\le x< -2\\x>2\end{matrix}\right.\)

\(\Rightarrow S\cap\left(-2;2\right)=\varnothing\)