Với giá trị nào của tham số m thì hàm số y = 2 x - 3 x + m 2 đạt giá trị lớn nhất trên đoạn [1;3] bằng 1/4
A.m = ±2
B. m = ±3
C. m = ±1
D. m = ± 3
cho hàm số y=\(\dfrac{x^2+mx+1}{x+m}\)với m là tham số. với giá trị nào của tham số m thì hàm số đạt cực đại tại x=2?
a. m=-3 b.m=3 c.m=-1 d.m=0
\(y=\dfrac{x^2+mx+1}{x+m}=x+\dfrac{1}{x+m}\)
\(\left\{{}\begin{matrix}y'\left(2\right)=0\\y''\left(2\right)< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}1-\dfrac{1}{\left(2+m\right)^2}=0\\\dfrac{2}{\left(m+2\right)^3}< 0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}m=-3\\m< -2\end{matrix}\right.\)
Chọn a
Cho hàm số bậc nhất y=(2m-3)x+2 ( m là tham số ). Với giá trị nào của m thì đồ thị hàm số trên song song với đường thẳng y=mx+2.
Đồ thị hàm số song song với đường thẳng \(y=mx+2\)khi
\(\Rightarrow\hept{\begin{cases}2m-3=m\\2\ne2\left(voli\right)\end{cases}}\Rightarrow2m-m=3\Rightarrow m=3\)
vậy \(m=3\)thì đồ thị hàm số trên song song với đường thẳng \(y=mx+2\)
Với giá trị nào của tham số m thì hàm số y = x 3 - m x 2 + ( 2 m - 3 ) x - 3 đạt cực đại tại x = 1?
A. m ≤ 3
B. m = 3
C. m < 3
D. m > 3
Chọn D
Để hàm số đạt cực đại x = 1 thì
⇔ m > 3
Với giá trị nào của m thì hàm số sau đây là hàm số bậc nhất
a, y=\(\sqrt{m-3}\times x+\dfrac{2}{3}\)
b, y= \(\dfrac{\sqrt{m}+\sqrt{5}}{\sqrt{m}-\sqrt{5}}\times x+2010\)
với giá trị nào của m thì hàm số ở ý a là hàm số đồng biến. Với gtri nào của m thì hàm số ở ý b là hàm nghịch biến
a) Ta có: \(y=\sqrt{m-3}\cdot x+\dfrac{2}{3}\left(m\ge3\right)\)
Để đây là hàm số bậc nhất thì: \(\sqrt{m-3}\ne0\Leftrightarrow m=3\)
Do: \(\sqrt{m-3}\ge0\forall m\ge3\)
Nên với \(m\ge3\) thì y đồng biến trên R
b) Ta có: \(y=\dfrac{\sqrt{m}+\sqrt{5}}{\sqrt{m}-\sqrt{5}}\cdot x+2010\left(m\ge0;m\ne5\right)\)
Để đây là hàm số bậc nhất thì: \(\sqrt{m}-\sqrt{5}\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ge0\\m\ne5\end{matrix}\right.\)
Do \(\sqrt{m}+\sqrt{5}>0\Rightarrow\sqrt{m}-\sqrt{5}< 0\Leftrightarrow m< 5\)
Vậy với 0 ≤ m < 5 thì y nghịch biến trên R
a) Để hàm số là hàm số bậc nhất thì:
√(m - 3) > 0
⇔ m - 3 > 0
⇔ m > 3
Vậy với m > 3 thì hàm số đã cho là hàm bậc nhất
b) Để hàm số là hàm bậc nhất thì √m - √5 ≠ 0 và m ≥ 0
⇔ √m ≠ √5
⇔ m ≠ 5
Vậy m ≠ 5 và m ≥ 0 thì hàm số đã cho làm hàm số bậc nhất
*) Để hàm số ở câu a là hàm đồng biến thì m > 3
*) Để hàm số ở câu b là hàm nghịch biến thì √m < √5
⇔ 0 \(\le\) m < 5
Vậy 0 \(\le\) m < 5 thì hàm số ở câu b là hàm số nghịch biến
Với tất cả các giá trị thực nào của tham số m thì hàm số y = x 3 - 3 ( m + 1 ) x 2 + 3 m ( m + 2 ) x nghịch biến trên đoạn [0;1]?
A. - 1 ≤ m ≤ 0
B. - 1 < m < 0
C. m ≥ - 1
D. m ≤ 0
Cho hàm số y=(m+1)x
a) Tìm các giá trị của tham số m để tham số nhận giá trị bằng -5 tại x=5 ,
b) Với giá trị nào của m thì đồ thị hàm số đi qua điểm A(2;3)?
c)Tìm giá trị của m để điểm B(0;4) thuộc đồ thị hàm số.
I.TỰ LUẬN
BÀI 1: a) Với giá trị nào của m thì hàm số y = (2m-1)x +5 là hàm số bậc nhất?
b) Với những giá trị nào của m thì hàm số bậc nhất y = (m – 1)x + 3 đồng biến?
c) Với những giá trị nào của k thì hàm số bậc nhất y = (5 – k)x + 1 nghịch biến?
a) với những giá trị nào của m thì hàm số y = (m + 6)x - 7 đồng biến?
b) với những giá trị nào của k thì hàm số y = (-k + 9)x + 100 nghịch biến?
c) với những giá trị nào của m thì đồ thị của hàm số y = 12x + (5 + m) và y = -3x + (3 - m) cắt nhau tại một điểm trên trục tung
a: Để hàm số y=(m+6)x-7 đồng biến thì m+6>0
=>m>-6
b: Để hàm số y=(-k+9)x+100 nghịch biến thì -k+9<0
=>-k<-9
=>k>9
c: Để hai đồ thị hàm số y=12x+(5+m) và y=-3x+(3-m) cắt nhau tại một điểm trên trục tung thì
\(\left\{{}\begin{matrix}m+5=3-m\\12\ne-3\left(đúng\right)\end{matrix}\right.\)
=>m+5=3-m
=>2m=-2
=>m=-1
Cho 2 hàm số bậc nhất y = (3m - 1)x + 2 và y = (m + 3)x +1
a) Với giá trị nào của m thì đồ thị của 2 hàm số là 2 đường thẳng song song với nhau?
b) Với giá trị nào của m thì đò thị của 2 hàm số là 2 đường thẳng cắt nhau?
\(a,\Leftrightarrow3m-1=m+3\Leftrightarrow2m=4\Leftrightarrow m=2\\ b,\Leftrightarrow3m-1\ne m+3\Leftrightarrow m\ne2\)
với giá trị nào của tham số m thì hàm số bậc nhất sau nghịch biến ?
a; y = ( m - 1 ) x + 3
b; y = ( m + 6 ) x - 7
Hai hàm số nghịch biến khi:
\(\left[{}\begin{matrix}m-1< 0\\m+6< 0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m< 1\\m< -6\end{matrix}\right.\)