cho tam giác ABC có góc AB= AC. C/m góc B= góc C
1. cho tam giác ABC có góc B = góc C. CMR AB=AC.
2. cho tam giác ABC có AB=AC. CMR góc B = góc C
minh vua tik ban do , ban tik lai minh di
cho tam giác ABC có AB=AC. Tia phân giác của góc A cắt BC tại D
a) C/m: tam giác ADB= tam giác ADC
b) Kẻ DH vuông góc với AB ( H thuộc AB), DK vuông góc với AC(k thuộc AC). C/m DH=DK
c) biết góc A = 4 góc B. tính số đo các góc của tam giác ABC.
a) \(\Delta ADB=\Delta ADC\left(c.g.c\right)\)
b) \(\Delta ADH=\Delta ADK\left(\text{cạnh huyền - góc nhọn}\right)\)
\(\Rightarrow DH=DK\)
c) A = 4B => A1 = 1/2A = 2B
Xét \(\Delta ABD\) vuông ở D có B + A1 = 900 hay 3B = 900 => B = 300
Do đó A = 4 . 300 = 1200
Xét \(\Delta ABC\) có C = 1800 - A - B = 300
giải giùm đi mọi người
cho 2 lik e
Cho tam giác ABC có AB = AC. AM vuông góc với BC tại M. Chứng minh
a) AM là tia phân giác góc BAC.
b) M là trung điểm của BC.
c) AM là đường trung trực của BC.
d) Góc B = góc C.
Bài 5: Cho tam giác ABC có góc B = góc C. Chứng minh AB = AC
b: Ta có: ΔBAC cân tại A
mà AM là đường cao
nên M là trung điểm của BC
1) Cho tam giác ABC vuông tại A có góc B = 60độ, AC = 3cm. Tính BC, AB
2) Cho tam giác ABC vuông tại A có BC = 10cm, góc C = 3cm. Tính góc B, AB, AC
3) Cho tam giác ABC vuông tại A có AB = 4cm, góc B = 50 độ. Tính BC, góc C, AC
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
cho tam giác abc có góc a = 60 độ góc c < góc B < 90 độ
a, cm ab<ac
b cm trên cạnh ac lấy điểm m sao cho am = ab .Chứng minh tam giác abm là tam giác đều
c, so sánh các cạnh của tam giác abc
a: góc C<góc B
=>AB<AC
b: Xét ΔABM co AB=AM và góc A=60 độ
nên ΔAMB đều
Cho tam giác ABC có góc B = góc C tia phân giác trong góc A cắt BC tại M vẽ MH vuông góc với AB (H thuộc AB ) MK vuông góc AC ( K thuộc AC ) chứng minh: a) tam giác AMB = tam giác AMC b) MH = MK
a: Xét ΔAMB và ΔAMC có
AB=AC
\(\widehat{BAM}=\widehat{CAM}\)
AM chung
Do đó: ΔAMB=ΔAMC
b: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
\(\widehat{HAM}=\widehat{KAM}\)
Do đó: ΔAHM=ΔAKM
Suy ra: MH=MK
1) Cho tam giác ABC có AB<AC. Tia phân giác của góc A cắt BC ở D. Trên cạnh AC lấy một điểm E sao cho AE = AB
a) C/m tam giác ABD = tam giác AED
b) C/m AD vuông góc với BE
c) Chứng minh góc ADB < góc ADC
2) Cho tam giác ABC có AB<AC, AD là tia phân giác của góc BAC ( D thuộc BC ). Trên cạnh AC lấy một điểm E sao cho AE = AB
a) C/m tam giác ADB = tam giác ADE
b) Gọi F là giao điểm của tia AB và tia ED. Chứng minh tam giác BFD = tam giác ECD
c) So sánh DB và DC
Cho tam giác ABC có góc B = góc C . Tia phân giác góc B cắt AC ở M và tia phân giác góc C cắt AB ở N
a)So sánh BM và CN
b) C/m tam giác ABM = tam giác ACN
a)Có: ^B=^C(gt)
Mà BM là tia pg của ^B
CN là tia pg của ^C
=> ^CBM=^BCN=^ABM=^ACN
Xét ΔBNC và ΔCMB có:
^B=^C(gt)
BC: cạnh chung
^BCN=^CBM(cmt)
=>ΔBNC=ΔCMB(g.c.g)
=>NC=BM
b) Vì ^B=^C(gt)
=> ΔABC cân tại A
=>AB=AC
Xét ΔABM và ΔACN có:
^A: góc chung
AB=AC(cmt)
^ABM=^ACN(cmt)
=>ΔABM=ΔACN(g.c.g)
Cho tam giác ABC, có góc B = góc C. Tia phân giác của góc A cắt BC tại M. C/m
a) tam giác AMB = tam giác AMC
b) AB = AC