a/3+b/2=5/6
Cho A = {0; 1; 2; 3; 4} và B = {2; 3; 4; 5; 6}. Kết quả của phép toán (A\B) ∪ (B\A) là:
A. {0; 1; 5; 6}; B. {1; 2}; C. {2; 3; 4}; D. {5; 6}.
A \ B = {0,1}
B \ A = {5;6}
(A\B) U (B\A) = {0;1;5;6}
=> A
1.Rút gọn: a)√(-3)^4 + √5^2 - √(-2)^6 b)√(3-√8)^2 + 2√2 c)√5-2√6 + √5+2√6 d)√a^6 -2√a^6 với a
Cho a >b . Chứng minh : a)4a – 3 > 4b – 3; b) 1 – 2a < 1- 2b ; c) 5( a+ 3) - 4 > 5( b + 3) – 4; d)5 – 2a < 5 – 2b e) – 2 (1 – a) – 6 > -2 (1 – b ) – 6
a. Ta có: a > b
4a > 4b ( nhân cả 2 vế cho 4)
4a - 3 > 4b - 3 (cộng cả 2 vế cho -3)
b. Ta có: a > b
-2a < -2b ( nhân cả 2 vế cho -2)
1 - 2a < 1 - 2b (cộng cả 2 vế cho 1)
d. Ta có: a < b
-2a > -2b ( nhân cả 2 vế cho -2)
5 - 2a > 5 - 2b (cộng cả 2 vế cho 5)
Cho A = {0; 1; 2; 3; 4} và B = {2; 3; 4; 5; 6}. Tập hợp (A\B) ∩ (B\A) bằng:
A. {5}; B. {0; 1; 5; 6}; C. {1; 2}; D. ∅
A\B={0;1}
B\A={5;6}
(A\B)\(\cap\)(B\A)=\(\varnothing\)
=>Chọn D
A\B = \(\left\{0;1\right\}\)
B\A= \(\left\{5;6\right\}\)
(A\B) \(\cap\) (B\A) = \(\varnothing\)
Gieo một con súc sắc hai lần.
a. Mô tả không gian mẫu
b. Phát biểu các biến cố sau dưới dạng mệnh đề:
A: = {(6,1), (6,2), (6,3), (6,4), (6, 5), (6, 6)}
B: = {(2, 6), (6, 2), (3, 5), (5, 3), (4, 4), (1, 7), (7, 1)}
C: = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}.
a. Không gian mẫu gồm 36 phần tử:
Ω = {(i, j) | i, j = 1, 2, 3, 4, 5, 6 }
Trong đó (i, j) là kết quả "lần đầu xuất hiện mặt i chấm, lần sau xuất hiện mặt j chấm".
b. Phát biểu các biến cố dưới dạng mệnh đề:
A = {(6,1), (6,2), (6,3), (6,4), (6, 5), (6, 6)}
- Đây là biến cố "lần đầu xuất hiện mặt 6 chấm khi gieo con súc sắc".
B = {(2, 6), (6, 2), (3, 5), (5, 3), (4, 4)}
- Đây là biến cố " cả hai lần gieo có tổng số chấm bằng 8".
C = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6)}
- Đây là biến cố " kết quả của hai lần gieo là như nhau".
Bài 2. a, Các phân số được sắp xếp theo thứ tự từ bé đế lớn là:
A, 2/3; 5/6; 4/2 B, 5/6; 4/2; 2/3 C, 4/2; 5/6; 2/3 D, 2/3; 4/2; 5/6.
b, Các phân số được sắp xếp theo thứ tự từ lớn đến bé là:
A, 2/3; 5/6; 4/2 B, 5/6; 4/2; 2/3 C, 4/2; 5/6; 2/3 D, 2/3; 4/2; 5/6.
Tính :
a) A= \(\sqrt{\sqrt{3}+\sqrt{2}}.\sqrt{\sqrt{3}-\sqrt{2}}\)
b) B=\(\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}\)
c) C= \(3-\sqrt{3-\sqrt{5}}\)
a) Ta có: \(A=\sqrt{\sqrt{3}+\sqrt{2}}\cdot\sqrt{\sqrt{3}-\sqrt{2}}\)
\(=\sqrt{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}\)
\(=\sqrt{3-2}=1\)
b) Ta có: \(B=\sqrt{5-2\sqrt{6}}+\sqrt{5+2\sqrt{6}}\)
\(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{3}+\sqrt{2}\right)^2}\)
\(=\sqrt{3}-\sqrt{2}+\sqrt{3}+\sqrt{2}\)
\(=2\sqrt{3}\)
`A=sqrt{sqrt3+sqrt2}.sqrt{sqrt3-sqrt2}`
`=sqrt{(sqrt3+sqrt2)(sqrt3-sqrt2)}`
`=sqrt{3-2}=1`
`b)B=sqrt{5-2sqrt6}+sqrt{5+2sqrt6}`
`=sqrt{3-2sqrt6+2}+sqrt{3+2sqrt6+2}`
`=sqrt{(sqrt3-sqrt2)^2}+sqrt{(sqrt3+sqrt2)^2}`
`=sqrt3-sqrt2+sqrt3+sqrt2=2sqrt3`
`c)C=3-sqrt{3-sqrt5}`
`=3-sqrt{(6-2sqrt5)/2}`
`=3-sqrt{(sqrt5-1)^2/2}`
`=3-(sqrt5-1)/sqrt2`
`=3-(sqrt{10}-sqrt2)/2`
`=(6-sqrt{10}+sqrt2)/2`
Số mà lớn hơn:
a 1+3+3^2+3^3+........+3^6 va B=3^7
b A=8^2 va B=2^6
c A=3^5 và B=2^5
rút gọn : 1, 7 mũ 3. 5 mũ 2 . 5 mũ 4 . 7 mũ 6 : (5 mũ 5 . 7 mũ 8)
2, 3 mũ 3 . a mũ 7 . 3 . a mũ 2 : (3 mũ 4 . a mũ 6)
3, 7 mũ 3 . 11 mũ 4 . a mũ 8 . b mũ 7 : 7 mũ 2 . 11 mũ 2 . a mũ 5 . b mũ 6
4, (2 mũ 5 . a mũ 4 . b mũ 3). (2 mũ 3 . a . b mũ 5) : 2 mũ 7 . a mũ 3 . b mũ 7
1; 73.52.54.76:(55.78)
= (73.76).(52.54) : (55.78)
= 79.56: (55.78)
= (79:78).(56:55)
= 7.5
= 35
2; 33.a7.3.a2:(34.a6)
= (33.3).(a7.a2): (34.a6)
= 34.a9: (34.a6)
= (34:34).(a9:a6)
= a3
3; 73.114.a8.b7: 72.112.a5.b6
= (73:72).(114.112).(a8.a5).(b7.b6)
= 7.116.a13.b13
a, 4/5 - 1/3. 5/3-3/2
b,7/6-2/3 5/4-3/8
c, 5/6-5/8. 7/4-5/6
Đề không đủ dấu để tính. Bạn coi lại.