Giới hạn của hàm số lim x → a x 2 - a x - a (với a là một hằng số và a ≥ 0) bằng
A. 0
B. a
C. 2 a
D. a
Tìm giới hạn của hàm số sau:
\(\lim\limits_{x\rightarrow a}\dfrac{x^4-a^4}{x^2-a^2}\)
\(\lim\limits_{x\rightarrow a}\dfrac{x^4-a^4}{x^2-a^2}=\lim\limits_{x\rightarrow a}\left(x^2+a^2\right)=2a^2\)
Tìm giới hạn của hàm số sau:
\(\lim\limits_{x\rightarrow2}\dfrac{x^2-3x+2}{x-2}\)
\(=\lim\limits_{x\rightarrow2}x-1=2-1=1\)
Tìm giới hạn của hàm số sau:
\(\lim\limits_{x\rightarrow1}\dfrac{\sqrt{2x+7}-3}{x-1}\)
\(\left(...\right)=\lim\limits_{x\rightarrow1}\dfrac{2\left(x-1\right)}{\left(x-1\right)\left(\sqrt{2x+7}+3\right)}=\lim\limits_{x\rightarrow1}\dfrac{2}{\sqrt{2x+7}+3}=\dfrac{1}{3}\)
Tìm giới hạn hàm số Lim x->4 1-x/(x-4)^2 Lim x->3+ 2x-1/x-3 Lim x->2+ -2x+1/x+2 Lim x->1- 3x-1/x+1
1: \(\lim\limits_{x\rightarrow4}\dfrac{1-x}{\left(x-4\right)^2}=-\infty\)
vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow4}1-x=1-4=-3< 0\\\lim\limits_{x\rightarrow4}\left(x-4\right)^2=\left(4-4\right)^2=0\end{matrix}\right.\)
2: \(\lim\limits_{x\rightarrow3^+}\dfrac{2x-1}{x-3}=+\infty\)
vì \(\left\{{}\begin{matrix}\lim\limits_{x\rightarrow3^+}2x-1=2\cdot3-1=5>0\\\lim\limits_{x\rightarrow3^+}x-3=3-3>0\end{matrix}\right.\) và x-3>0
3: \(\lim\limits_{x\rightarrow2^+}\dfrac{-2x+1}{x+2}\)
\(=\dfrac{-2\cdot2+1}{2+2}=\dfrac{-3}{4}\)
4: \(\lim\limits_{x\rightarrow1^-}\dfrac{3x-1}{x+1}=\dfrac{3\cdot1-1}{1+1}=\dfrac{2}{2}=1\)
1. hàm số y = 3cosx luôn nhận giá trị trong tập nào
2. tập xác định của hàm số y = cosx
3. tính giới hạn \(L=\lim\limits\dfrac{n^2-3n^3}{2n^3+5n-2}\)
4. tính giới hạn \(L=\lim\limits\left(3n^2+5n-3\right)\)
5. kết quả của giới hạn \(\lim\limits_{n\rightarrow+\infty}\left(n^3-2n^2+3n-4\right)\)
1: \(-1< =cosx< =1\)
=>\(-3< =3\cdot cosx< =3\)
=>\(y\in\left[-3;3\right]\)
2:
TXĐ là D=R
3: \(L=\lim\limits\dfrac{-3n^3+n^2}{2n^3+5n-2}\)
\(=\lim\limits\dfrac{-3+\dfrac{1}{n}}{2+\dfrac{5}{n^2}-\dfrac{2}{n^3}}=-\dfrac{3}{2}\)
4:
\(L=lim\left(3n^2+5n-3\right)\)
\(=\lim\limits\left[n^2\left(3+\dfrac{5}{n}-\dfrac{3}{n^2}\right)\right]\)
\(=+\infty\) vì \(\left\{{}\begin{matrix}lim\left(n^2\right)=+\infty\\\lim\limits\left(3+\dfrac{5}{n}-\dfrac{3}{n^2}\right)=3>0\end{matrix}\right.\)
5:
\(\lim\limits_{n\rightarrow+\infty}n^3-2n^2+3n-4\)
\(=\lim\limits_{n\rightarrow+\infty}n^3\left(1-\dfrac{2}{n}+\dfrac{3}{n^2}-\dfrac{4}{n^3}\right)\)
\(=+\infty\) vì \(\left\{{}\begin{matrix}\lim\limits_{n\rightarrow+\infty}n^3=+\infty\\\lim\limits_{n\rightarrow+\infty}1-\dfrac{2}{n}+\dfrac{3}{n^2}-\dfrac{4}{n^3}=1>0\end{matrix}\right.\)
\(1,y=3cosx\)
\(+TXD\) \(D=R\)
Có \(-1\le cosx\le1\)
\(\Leftrightarrow-3\le3cosx\le3\)
Vậy có tập giá trị \(T=\left[-3;3\right]\)
\(2,y=cosx\)
\(TXD\) \(D=R\)
\(3,L=lim\dfrac{n^2-3n^3}{2n^3+5n-2}=lim\dfrac{\dfrac{1}{n}-3}{2+\dfrac{5}{n^2}-\dfrac{2}{n^3}}\)(chia cả tử và mẫu cho \(n^3\))
\(=\dfrac{lim\dfrac{1}{n}-lim3}{lim2+5lim\dfrac{1}{n^2}-2lim\dfrac{1}{n^3}}=\dfrac{0-3}{2+5.0-2.0}=-\dfrac{3}{2}\)
\(4,L=lim\left(3n^2+5n-3\right)\\ =lim\left(3+\dfrac{5}{n}-\dfrac{3}{n^2}\right)\\ =lim3+5lim\dfrac{1}{n}-3lim\dfrac{1}{n^2}\\ =3\)
\(5,\lim\limits_{n\rightarrow+\infty}\left(n^3-2n^2+3n-4\right)\\ =lim\left(1-\dfrac{2}{n}+\dfrac{3}{n^2}-\dfrac{4}{n^3}\right)\\ =lim1-0\\ =1\)
a) Sử dụng giới hạn \(\mathop {\lim }\limits_{h \to 0} \frac{{{e^h} - 1}}{h} = 1\) và đẳng thức \({e^{x + h}} - {e^x} = {e^x}\left( {{e^h} - 1} \right),\) tính đạo hàm của hàm số \(y = {e^x}\) tại x bằng định nghĩa.
b) Sử dụng đẳng thức \({a^x} = {e^{x\ln a}}\,\,\left( {0 < a \ne 1} \right),\) hãy tính đạo hàm của hàm số \(y = {a^x}.\)
a) Với x bất kì và \(h = x - {x_0}\), ta có:
\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{h \to 0} \frac{{f\left( {{x_0} + h} \right) - f\left( {{x_0}} \right)}}{h} = \mathop {\lim }\limits_{h \to 0} \frac{{{e^{{x_0} + h}} - {e^{{x_0}}}}}{h}\\ = \mathop {\lim }\limits_{h \to 0} \frac{{{e^{{x_o}}}\left( {{e^h} - 1} \right)}}{h} = \mathop {\lim }\limits_{h \to 0} {e^{{x_0}}}.\mathop {\lim }\limits_{h \to 0} \frac{{{e^h} - 1}}{h} = {e^{{x_0}}}\end{array}\)
Vậy hàm số \(y = {e^x}\) có đạo hàm là hàm số \(y' = {e^x}\)
b) Ta có \({a^x} = {e^{x\ln a}}\,\)nên \(\left( {{a^x}} \right)' = \left( {{e^{x\ln a}}} \right)' = \left( {x\ln a} \right)'.{e^{x\ln a}} = {e^{x\ln a}}\ln a = {a^x}\ln a\)
Tính giới hạn hàm số :
\(\lim\limits_{x\rightarrow+\infty}\left(\frac{x}{1+x}\right)^x\)
\(L=\lim\limits_{x\rightarrow+\infty}\left(\frac{x}{1+x}\right)^x\)
Ta có : \(L=\lim\limits_{x\rightarrow+\infty}\left(\frac{x}{1+x}\right)^x=\lim\limits_{x\rightarrow+\infty}\left(1-\frac{1}{1+x}\right)^x\)
Đặt \(-\frac{1}{1+x}=\frac{1}{t}\Rightarrow\begin{cases}x=-\left(1+t\right)\\x\rightarrow+\infty;t\rightarrow-\infty\end{cases}\)
\(\Rightarrow L=\lim\limits_{t\rightarrow-\infty}\left(1+\frac{1}{t}\right)^{-\left(1+t\right)}=\lim\limits_{t\rightarrow-\infty}\frac{1}{\left(1+\frac{1}{t}\right)^{1+t}}=\lim\limits_{t\rightarrow-\infty}\frac{1}{\left(1+\frac{1}{t}\right)\left(1+\frac{1}{t}\right)^t}=\frac{1}{1.e}=\frac{1}{e}\)
Biết rằng hàm số \(f\left( x \right)\) thỏa mãn \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = 3\) và \(\mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = 5.\) Trong trường hợp này có tồn tại giới hạn \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\) hay không? Giải thích.
Vì \(\mathop {\lim }\limits_{x \to {2^ - }} f\left( x \right) = 3 \ne \mathop {\lim }\limits_{x \to {2^ + }} f\left( x \right) = 5\) nên không tồn tại giới hạn \(\mathop {\lim }\limits_{x \to 2} f\left( x \right)\)
a) Với \(h \ne 0,\) biến đổi hiệu \(\sin \left( {x + h} \right) - \sin x\) thành tích.
b) Sử dụng công thức giới hạn \(\mathop {\lim }\limits_{h \to 0} \frac{{\sin h}}{h} = 1\) và kết quả của câu a, tính đạo hàm của hàm số y = sin x tại điểm x bằng định nghĩa.
a) \(\sin \left( {x + h} \right) - \sin x = 2\cos \frac{{2x + h}}{2}.\sin \frac{h}{2}\)
b) Với \({x_0}\) bất kì, ta có:
\(\begin{array}{l}f'\left( {{x_0}} \right) = \mathop {\lim }\limits_{x \to {x_0}} \frac{{f\left( x \right) - f\left( {{x_0}} \right)}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sin x - \sin {x_0}}}{{x - {x_0}}}\\ = \mathop {\lim }\limits_{x \to {x_0}} \frac{{2\cos \frac{{x + {x_0}}}{2}.\sin \frac{{x - {x_0}}}{2}}}{{x - {x_0}}} = \mathop {\lim }\limits_{x \to {x_0}} \frac{{\sin \frac{{x - {x_0}}}{2}}}{{\frac{{x - {x_0}}}{2}}}.\mathop {\lim }\limits_{x \to {x_0}} \cos \frac{{x + {x_0}}}{2} = \cos {x_0}\end{array}\)
Vậy hàm số y = sin x có đạo hàm là hàm số \(y' = \cos x\)
tính giới hạn của hàm số
lim x->0 : \(\frac{\sqrt[m]{1+ax}-\sqrt[n]{1+bx}}{x}\)
lim ( x ----> 0 ) \(\frac{\sqrt[m]{1+ax}-\sqrt[n]{1+bx}}{x}\)
= lim ( x----> 0 ) \(\frac{\sqrt[m]{1+ax}-1+1-\sqrt[n]{1+bx}}{x}\)
= lim ( x ---> 0 ) \(\frac{\sqrt[m]{1+ax}-1}{x}\)- lim ( x ---> 0 ) \(\frac{\sqrt[n]{1+bx}-1}{x}\)
= lim ( x ----> 0 ) \(\frac{ax}{x\left(\sqrt[m]{\left(1+ax\right)^{m-1}}+\sqrt[m]{\left(1+ax\right)^{m-2}}+...+1\right)}\)
- lim ( x ----> 0 ) \(\frac{bx}{x\left(\sqrt[n]{\left(1+ax\right)^{n-1}}+\sqrt[n]{\left(1+ax\right)^{n-2}}+...+1\right)}\)
= lim ( x -----> 0 ) \(\frac{a}{\sqrt[m]{\left(1+ax\right)^{m-1}}+\sqrt[m]{\left(1+ax\right)^{m-2}}+...+1}\)
- lim ( x ---> 0 ) \(\frac{b}{\sqrt[n]{\left(1+bx\right)^{n-1}}+\sqrt[n]{\left(1+bx\right)^{n-2}}+...+1}\)
= \(\frac{a}{m}-\frac{b}{n}\)