Cho ∫ a d f ( x ) d x = 5 , ∫ b d f ( x ) d x = 2 . Tính ∫ b a f ( x ) d x .
A. 7
B. 3
C. 0
D. -3
cho đa thức f(x)=ax mũ 3 + bx mũ 2 + cx + d (a,b,c,d thuộc z) biết f(x) chia hết cho 5 với mọi x thuộc z . Chứng minh rang : a,b,c,d chia hết cho 5
Ta có: x là số nguyên và x chia hết cho 5
=> \(ax^3\)chia hết cho 5
\(bx^2\)chia hết cho 5
\(cx\)chia hết cho 5
\(d\)chia hết cho 5
Suy ra cả a,b,c,d đều chia hết cho 5
cho đa thức f(x)=ax mũ 3 + bx mũ 2 + cx + d (a,b,c,d thuộc z) biết f(x) chia hết cho 5 với mọi x thuộc z . Chứng minh rang : a,b,c,d chia hết cho 5
cho C=3x-1 phần x+5,cho D = 2x+1 phần x+3,cho F= 3x-5 phần x+2
tìm x de
a) C,D,F co giá trị là một số nguyên
b)C,D,F có giá trị lớn nhất ,nhỏ nhất
57. Cho hs f(x) = ax +b / cx +d ( a,b,c,d thuộc R , c#0) . Biết f(1)=1 , f(2)=2 và f(f(x))=x với mọi x # -d/c. Tìm tiệm cận ngang của đồ thị hs y = f(x)
\(f\left(0\right)=\dfrac{b}{d}\Rightarrow f\left(f\left(0\right)\right)=0\Rightarrow f\left(\dfrac{b}{d}\right)=0\)
\(\Rightarrow\dfrac{\dfrac{ab}{d}+b}{\dfrac{cb}{d}+d}=0\Rightarrow b\left(a+d\right)=0\Rightarrow\left[{}\begin{matrix}b=0\\d=-a\end{matrix}\right.\)
TH1: \(b=0\)
\(f\left(1\right)=1\Rightarrow a=c+d\)
\(f\left(2\right)=2\Rightarrow2a=2\left(2c+d\right)\Rightarrow a=2c+d\)
\(\Rightarrow2c+d=c+d\Rightarrow c=0\) (ktm)
TH2: \(d=-a\)
\(f\left(1\right)=1\Rightarrow a+b=c+d=c-a\Rightarrow2a+b=c\) (1)
\(f\left(2\right)=2\Rightarrow2a+b=2\left(2c+d\right)=2\left(2c-a\right)\Rightarrow4a+b=4c\) (2)
Trừ (2) cho (1) \(\Rightarrow2a=3c\Rightarrow\dfrac{a}{c}=\dfrac{3}{2}\)
\(\Rightarrow\lim\limits_{x\rightarrow\infty}\dfrac{ax+b}{cx+d}=\dfrac{a}{c}=\dfrac{3}{2}\)
Hay \(y=\dfrac{3}{2}\) là tiệm cận ngang
Cho f(x)=ax3+bx2+cx+d ( a,b,c,d thuộc Z)
Biết f(x)chia hết cho 5 với mọi giá trị x thuộc Z.
Chứng minh rằng: a, b, c, d chia hết cho 5.
Ta có: \(f\left(x\right)=ax^3+bx^2+cx+d⋮5\forall x\in Z\)
+ Với x=0 ta có \(f\left(0\right)=d⋮5\left(1\right)\)
+ Với x=1 ta có \(f\left(1\right)=a+b+c+d⋮5\left(2\right)\)
+ Với x=-1 ta có \(f\left(-1\right)=-a+b-c+d⋮5\left(3\right)\)
+ Với x=2 ta có \(f\left(2\right)=8a+4b+2c+d⋮5\left(4\right)\)
+ Với x=-2 ta có\(f\left(-2\right)=-8a+4b-2c+d⋮5\left(5\right)\)
Từ (1),(2),(3),(4) và (5) suy ra:
\(\left\{{}\begin{matrix}a+b+c⋮5\\-a+b-c⋮5\end{matrix}\right.\)
\(\Rightarrow\left(a+b+c\right)\left(-a+b-c\right)⋮5\)
\(\Rightarrow\left(a+b+c-a+b-c\right)⋮5\)
\(\Rightarrow2b⋮5\)
\(\Rightarrow b⋮5\) (vì 2 và 5 là 2 số nguyên tố cùng nhau) \(\left(6\right)\)
Từ (1),(2),(4) và (6) \(\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\a+c⋮5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\8\left(a+c\right)⋮5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}8a+2c⋮5\\8a+8c⋮5\end{matrix}\right.\)
\(\Rightarrow\left(8a+2c\right)-\left(8a+8c\right)⋮5\Rightarrow6c⋮5\)
\(\Rightarrow c⋮5\) (vì ƯCLN(6,5)=1)
\(\Rightarrow a⋮5\) (vì \(a+c⋮5\) )
Vậy \(a,b,c,d⋮5\)
57. Cho hs f(x) = \(\dfrac{ax+b}{cx+d}\) ( a,b,c,d thuộc R , c#0). Biết f(1)=1 , f(2)=2 và f (f(x)) =x với mọi x # \(\dfrac{-d}{c}\). Tìm tiệm cận ngang của đồ thị hs y= f(x)
cho f(x) = 2(x^2-3) - ( x^2 - 3 ) - ( x^2 + 5x ) a, thu gọn f(x) . b , chứng tỏ -1 và 6 là nghiệm của f(x) . bài 2 : Tìm nghiệm của các đa thức . a, A(x) = -4x + 7 . b, B(x) = x^2 + 2x . c, C(x) = 1/2 - căn bậc hai x . d, D(x) = 2x^2 - 5
Bài 2:
a: A(x)=0
=>-4x+7=0
=>4x=7
=>x=7/4
b: B(x)=0
=>x(x+2)=0
=>x=0 hoặc x=-2
c: C(x)=0
=>1/2-căn x=0
=>căn x=1/2
=>x=1/4
d: D(x)=0
=>2x^2-5=0
=>x^2=5/2
=>\(x=\pm\dfrac{\sqrt{10}}{2}\)
cho đa thức F(x)=\(ax^3+bx^2+cx+d\) với a,b,c,d là các hệ số nguyên.Biết rằng F(x) chia hết cho 5 với mọi x nguyên.Chướng minh rằng a,b,c,d đều chia hết cho 5
ta có: F(x) chia hết 5 => F(0)= a.0^3 + b.0^2 + c.0 + d chia hết 5
=> 0+0+0+d chia hết cho 5 => d chia hết 5
ta có: F(1)= a.1^3 + b.1^2 +c.1 + d chia hết 5
=> a+b+c+d chia hết 5
Mà d chia hết 5 => a+b+c chia hết 5 (1)
ta có:F(-1)= a.(-1)^3 + b.(-1)^2 + c.(-1) +d chia hết 5
=> -a+b-c+d chia hết 5
Mà d chia hết 5 => -a+b-c chia hết 5 (2)
Từ (1) và (2) => (a+b+c)+(-a+b-c) chia hết 5
=> a+b+c-a+b-c chia hết 5 => 2b chia hết 5 => b chia hết 5
Từ (1) và (2) => (a+b+c)-(-a+b-c) chia hêt 5
=> a+b+c+a-b+c chia hết 5 => 2a+2c chia hết 5 (3)
ta có: F(2)= a.2^3 + b.2^2 + c.2 +d chia hết 5
=> 8a+4b+2c+d chia hết 5
Mà b,d chia hết 5 => 8a+2c chia hết 5 (4)
Từ (3) và (4) => (8a+2c)-(2a+2c) chia hết 5 => 6a chia hết 5 => a chia hết 5
=> c chia hết 5
Vậy...
Đúng thì k nha mina !!
Cho đa thức f(x) = a.x^3+b.x^2 +cx + d với các hệ số a,b,c,d nguyên. CMR nếu f(x) chia hết cho 5 với mọi x thì các hệ số a,b,c,d cũng chia hết cho 5
Mình làm theo cách của bài185 trong sách "Nâng cao và phát triển toán 7 tập 2"của tác giả Vũ Hữu Bình nhé :
Vì f(x) chia hết cho 5 với mọi x thuộc Z
=>f(0) = a.\(0^3\)+b.\(0^2\)+c.0+d = d chia hết cho 5 ('1')
=>f(1) = a.\(1^3\)+b.\(1^2\)+c.1+d = a+b+c+d chia hết cho 5 ('2')
=>f(-1) = a.\(\left(-1\right)^3\)+b.\(\left(-1\right)^2\)+c.(-1)+d = -a+b-c+d chia hết cho 5 ('3')
=>f(2) = a.\(2^3\)+b.\(2^2\)+c.2+d = 8a+4b+2c+d chia hết cho 5 ('4')
Lấy (2)-(1) = a+b+c+d-d = a+b+c chia hết cho 5 ('5')
Lấy(2)+(3)-(1) = a+b+c+d-a+b-c+d-d = 2b chia hết cho 5 mà 2 không chia hết cho 5 => b chia hết cho 5 ('6')
Lấy (3)-(1)-(6) = -a+b-c+d-d-b = -a-c chia hết cho 5 ('7')
Lấy ('4')-('1')-4.('6')+2.('7') = 8a+4b+2c+d-d-4b+2(-a-c) = 8a+2c+(-2a)+(-2c) = 6a chia hết cho 5 (vì mỗi số hạng đều chia hết cho 5 đã cm ở trên)
Mà 6 không chia hết cho 5 => a chia hết cho 5 ('8')
Lấy ('7')+('8') = -a-c+a = -c chia hết cho 5 => -1.(-c) = c chia hết cho 5 ('9')
Vậy từ ('1');('2');('8');('9') => f(x) chia hết cho 5 với mọi x thuộc Z thì các hệ số a;b;c;d cũng chia hết cho 5
Để f(x) chia hết cho 5 <=> a.x^3 +b.x^2 +cx +d cũng chia hết cho 5
<=>a.x^3 chia hết cho 5 và b.x^2 chia hết cho 5 và c.x chia hết cho 5 và d chia hết cho 5 (cùng xảy ra 1 lúc)
Mà x là mọi x nên theo tính chất chia hết của 1 tích ta có a,b,c,d phải chia hết cho 5 (đpcm)
cho y = f(x) = x-1/x-2 a) Tính f(1), f(-1), f(0), f(2) b) Cho f(x) = 2. Tìm x c) Tìm x thuộc Z để y thuộc Z d) Tìm a biết f(a) = 5
a: \(f\left(1\right)=\dfrac{1-1}{1-2}=-1\)
\(f\left(-1\right)=\dfrac{-1-1}{-1-2}=-\dfrac{2}{-3}=\dfrac{2}{3}\)
\(f\left(0\right)=\dfrac{0-1}{0-2}=\dfrac{1}{2}\)
\(f\left(2\right)=\dfrac{2-1}{2-2}=\varnothing\)
b: f(x)=2 nên x-1=2x-4
=>2x-4=x-1
=>x=3
c: Để y là số ngyên thì \(x-2+1⋮x-2\)
\(\Leftrightarrow x-2\in\left\{1;-1\right\}\)
hay \(x\in\left\{3;1\right\}\)