Cho x, y, z là các số thực dương thỏa mãn điều kiện y 2 ≥ 2 x z ; z 2 ≥ 2 x y . Giá trị nhỏ nhất của biểu thức: P = 2 x 2 x + y + y y + z + 3 z z + 2 x nằm trong khoảng nào sau đây?
A. (0;1)
B. (1;2)
C. (2;3)
D. (3;4)
cho x,y,z là các số thực dương thỏa mãn điều kiện x+y+z=xyz.Tìm GTNN của biểu thức S=x/y^2 + y/z^2 + z/x^2
M=x+yxy.1z≥2√xyxy.1z=2z√xy≥2z(x+y2)=4z(x+y)M=x+yxy.1z≥2xyxy.1z=2zxy≥2z(x+y2)=4z(x+y)
=4z(1−z)=414−(z−12)2≥16=4z(1−z)=414−(z−12)2≥16
Min M= 16 khi z=1/2 và x=y =1/4
cho các số thực dương x,y,z thỏa mãn điều kiện \(x\sqrt{2020-y^2}+y\sqrt{2020-z^2}+z\sqrt{2020-x^2}\) =3030 . tính giá trị của biểu thức \(A=x^2+y^2+z^2\)
ĐKXĐ: \(\left\{{}\begin{matrix}2020-y^2\ge0\\2020-z^2\ge0\\2020-x^2\ge0\end{matrix}\right.\)
Ta có:
\(x\sqrt{2020-y^2}+y\sqrt{2020-z^2}+z\sqrt{2020-x^2}=3030\)
\(\Leftrightarrow2x\sqrt{2020-y^2}+2y\sqrt{2020-z^2}+2z\sqrt{2020-x^2}=6060\)
\(\Leftrightarrow2020-y^2-2x\sqrt{2020-y^2}+x^2+2020-z^2-2y\sqrt{2020-z^2}+y^2+2020-x^2-2z\sqrt{2020-x^2}+z^2=0\)
\(\Leftrightarrow\left(\sqrt{2020-y^2}-x\right)^2+\left(\sqrt{2020-z^2}-y\right)^2+\left(\sqrt{2020-x^2}-z\right)^2=0\)
\(\Leftrightarrow\left(\sqrt{2020-y^2}-x\right)^2=\left(\sqrt{2020-z^2}-y\right)^2=\left(\sqrt{2020-x^2}-z\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{2020-y^2}=x\\\sqrt{2020-z^2}=y\\\sqrt{2020-x^2}=z\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2020-y^2=x^2\\2020-z^2=y^2\\2020-x^2=z^2\end{matrix}\right.\)(vì \(x,y,z>0\))
\(\Leftrightarrow\left\{{}\begin{matrix}2020=x^2+y^2\\2020=y^2+z^2\\2020=z^2+x^2\end{matrix}\right.\)
\(\Rightarrow2\left(x^2+y^2+z^2\right)=3.2020\)
\(\Rightarrow x^2+y^2+z^2=3.1010=3030\)
\(\Rightarrow A=x^2+y^2+z^2=3030\)
Vậy \(A=3030\)
1) Cho các số thực dương x,y,z thỏa mãn điều kiện x\(\sqrt{2020-y^2}\) + y\(\sqrt{2020-z^2}\) +z\(\sqrt{2023-x^2}\)=3030. Tính giá trị vủa biểu thức A=x\(^2\)+\(y^2\)+\(z^2\)
Lời giải:
Áp dụng BĐT AM-GM:
\(x\sqrt{2020-y^2}+y\sqrt{2020-z^2}+z\sqrt{2020-x^2}\leq \frac{x^2+(2020-y^2)}{2}+\frac{y^2+(2020-z^2)}{2}+\frac{z^2+(2020-x^2)}{2}=3030\)Dấu "=" xảy ra khi:
\(\left\{\begin{matrix} x^2=2020-y^2\\ y^2=2020-z^2\\ z^2=2020-x^2\end{matrix}\right.\Rightarrow x=y=z=\sqrt{1010}\)
Khi đó:
$A=3(\sqrt{1010})^2=3030$
cho x,y,z là các số dương thỏa mãn điều kiện x+y+z=2.CMR: (x^2/y+z)+(y^2/z+x)+(z^2/x+y) lớn hơn hoặc bằng 1
\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{\left(x+y+x\right)^2}{y+z+z+x+x+y}=\frac{x+y+x}{2}=1\)
Dấu ' =' xảy ra khi \(x=y=z=\frac{2}{3}\)
Cho các số thực dương thỏa mãn điều kiện x^2+y^2+z^2<=2018 Tìm GTNN và GTLN A=x+y+z+xy+xz+yz
Cho x,y,z là các số thực dương thỏa mãn điều kiện xy+yz+xz=12. Chứng minh rằng:
\(\sqrt[x]{\dfrac{\left(12+y^2\right)\left(12+z^2\right)}{12+x^2}}\)+ \(\sqrt[y]{\dfrac{\left(12+x^2\right)\left(12+z^2\right)}{12+y^2}}\)+ \(\sqrt[z]{\dfrac{\left(12+x^2\right)\left(12+y^2\right)}{12+z^2}}\)
Cho ba số thực dương x,y,z thỏa mãn điều kiện x + y +z = xyz .Tìm giá trị nhỏ nhất của biểu thức Q = \(\dfrac{y+2}{x^2}+\dfrac{z+2}{y^2}+\dfrac{x+2}{z^2}\)
Cho x,y,z là ba số thực dương thỏa mãn điều kiện \(\left(x-z\right)\left(y-z\right)=z^2\).Chứng minh rằng tích xyz là số chính phương
Cho x,y,z là các số thực dương và thỏa mãn điều kiện x+y+z=xyz. Tìm giá thị lớn nhất của:
\(P=\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1 +z^2}}\)
\(\hept{\begin{cases}x,y,z>0\\x+y+z=xyz\end{cases}}\)
\(\Rightarrow\frac{1}{xy} +\frac{1}{yz}+\frac{1}{zx}=1\)
Có : \(\frac{1}{\sqrt{1+x^2}}=\frac{1}{\sqrt{\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}+x^2}}\le\frac{1}{2.\sqrt{\frac{x^2y}{xyz}}}\le\frac{1}{2}\)
\(\frac{1}{\sqrt{1+y^2}}=\frac{1}{\sqrt{\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}+y^2}}\le\frac{1}{2\sqrt{\frac{y^2z}{xyz}}}\le\frac{1}{2}\)
\(\frac{1}{\sqrt{1+z^2}}=\frac{1}{\sqrt{\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}+z^2}}\le\frac{1}{2\sqrt{\frac{z^2x}{xyz}}}\le\frac{1}{2}\)
\(\Rightarrow\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1+z^2}}\le\frac{3}{2}\)
Vậy P max = 3/2
Cho x, y là các số thực dương, z là số thực khác 0 thỏa mãn điều kiện \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=0\). Chứng minh \(\sqrt{x+y}=\sqrt{x-z}+\sqrt{y-z}\)
Ta có: \(\left(\sqrt{x+y}\right)^2=\left(\sqrt{x-z}+\sqrt{y-z}\right)^2\)
\(\Leftrightarrow\)\(x+y=x+y-2z+2\sqrt{\left(x-z\right)\left(y-z\right)}\)
\(\Leftrightarrow2z=2\sqrt{\left(x-z\right)\left(y-z\right)}\)
Theo giả thiết, ta có:
theo giả thiết, ta có: \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=0\Rightarrow\frac{1}{z}-\frac{1}{x}=\frac{1}{y}\)\(\Rightarrow\frac{x-z}{zx}=\frac{1}{y}\Rightarrow x-z=\frac{zx}{y}\)
Tương tự, ta có: \(y-z=\frac{zy}{x}\)
Do đó: \(2\sqrt{\left(x-z\right)\left(y-z\right)}=2\sqrt{\frac{zx}{y}.\frac{zy}{x}}=2z\) (1)
ta có: \(\left(\sqrt{x+y}\right)^2=\left(\sqrt{x-z}+\sqrt{y-z}\right)^2\)
\(\Leftrightarrow2z=2\sqrt{\left(x-z\right)\left(y-z\right)}\)(2)
Thay (2) vào (1) ta thấy (2) luôn đúng
Suy ra ĐPCM
Vì \(x>0,y>0\Rightarrow\frac{1}{x}>0;\frac{1}{y}>0\)
mà \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=0\Rightarrow\frac{1}{z}=\frac{1}{x}+\frac{1}{y}\Rightarrow\frac{1}{z}>0\Rightarrow z>0\)
Ta có: \(\frac{1}{x}+\frac{1}{y}-\frac{1}{z}=0\Leftrightarrow yz+zx-xy=0\)
\(\Leftrightarrow-z^2=-z^2+yz+zx-xy=-\left(x-z\right)\left(y-z\right)\)
\(\Leftrightarrow z^2=\left(x-z\right)\left(y-z\right)>0\)
\(\Rightarrow z=\sqrt{\left(x-z\right)\left(y-z\right)}\left(z>0\right)\)
Lại có: \(x+y=x-z+y-z+2z\)
\(=\left(x-z\right)+\left(y-z\right)+2\sqrt{\left(x-z\right)\left(y-z\right)}=\left(\sqrt{x-z}+\sqrt{y-z}\right)^2\)
Suy ra \(\sqrt{x+y}=\sqrt{x-z}+\sqrt{y-z}\) (ĐPCM)