Cho phương trình ẩn x: x + a a - x + x - a a + x = a 3 a + 1 a 2 - x 2
Tìm giá trị của a sao cho phương trình nhận x = 1/2 là nghiệm.
Cho phương trình ẩn x (x+a)/(x+2)+(x-2)/(x-a)=2 a/ Giải phương trình với ẩn a=4 b/ Tìm các giá trị của a sao cho phương trình thừa nhận x=-1
Cho phương trình ẩn x: x + a a - x + x - a a + x = a 3 a + 1 a 2 - x 2
Giải phương trình khi a = 1
Khi a = 1, ta có phương trình:
⇔ x + 1 2 + (x – 1)(1 – x) = 4
⇔ x 2 + 2x + 1 + x – x 2 – 1 + x = 4
⇔ 4x = 4 ⇔ x = 1 (loại)
Vậy phương trình vô nghiệm.
Cho phương trình ẩn x: x + a a - x + x - a a + x = a 3 a + 1 a 2 - x 2
Giải phương trình khi a = - 3
Khi a = - 3, ta có phương trình:
⇔ (3 – x)(x – 3) + x + 3 2 = -24
⇔ 3x – 9 – x 2 + 3x + x 2 + 6x + 9 = -24 ⇔ 12x = - 24
⇔ x = -2 (thỏa mãn)
Vậy phương trình có nghiệm x = -2
Cho phương trình ẩn x: x + a a - x + x - a a + x = a 3 a + 1 a 2 - x 2
Giải phương trình khi a = 0
Khi a = 0, ta có phương trình:
Phương trình nghiệm đúng với mọi giá trị của x ≠ 0
Vậy phương trình có nghiệm x ∈ R / x ≠ 0.
Cho phương trình ẩn x:
x-a/x+a - x+a/x-a + 3a^2+a/x^2-a^2 = 0
a)Giải phương trình với a = -3
b)Giải phương trình với a = 1
c)Xác định a để phương trình có nghiệm x = 0.5
Cho phương trình (ẩn x):x+a/a-x - x-a/a+x=a(3a+1)/a^2-x^2
Giải phương trình với a=-3Giải phương trình với a=1Giải phương trình với a=0Tìm các giá trị của a sao cho phương trình nhận x=1/2 làm nghiệm
1. a = 3 thì phương trình trở thành:
\(\frac{x+3}{3-x}-\frac{x-3}{3+x}=\frac{-3\left[3.\left(-3\right)+1\right]}{\left(-3\right)^2}-x^2\)
\(\Leftrightarrow\frac{\left(x+3\right)^2+\left(3-x\right)^2}{\left(3-x\right)\left(3+x\right)}=\frac{-3\left[-9+1\right]}{9}-x^2\)
\(\Leftrightarrow\frac{x^2+6x+9+x^2-6x+9}{\left(3-x\right)\left(3+x\right)}=\frac{-3.\left(-8\right)}{9}-x^2\)
\(\Leftrightarrow\frac{2x^2+18}{9-x^2}=\frac{24}{9}-x^2\)
\(\Leftrightarrow\frac{2x^2+18}{9-x^2}+x^2=\frac{24}{9}\)
\(\Leftrightarrow\frac{2x^2+18+9x^2-x^4}{9-x^2}=\frac{24}{9}\)
\(\Leftrightarrow\frac{11x^2+18-x^4}{9-x^2}=\frac{24}{9}\)
\(\Leftrightarrow99x^2+18-9x^4=216-24x^2\)
\(\Leftrightarrow9x^4-123x^2+198=0\)
Đặt \(x^2=t\left(t\ge0\right)\)
Phương trình trở thành \(9t^2-123t+198=0\)
Ta có \(\Delta=123^2-4.9.198=8001,\sqrt{\Delta}=3\sqrt{889}\)
\(\Rightarrow\orbr{\begin{cases}t=\frac{123+3\sqrt{889}}{18}=\frac{41+\sqrt{889}}{6}\\t=\frac{123-3\sqrt{889}}{18}=\frac{41-\sqrt{889}}{6}\end{cases}}\)
Lúc đó \(\orbr{\begin{cases}x^2=\frac{41+\sqrt{889}}{6}\\x^2=\frac{41-\sqrt{889}}{6}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm\sqrt{\frac{41+\sqrt{889}}{6}}\\x=\pm\sqrt{\frac{41-\sqrt{889}}{6}}\end{cases}}\)
Vậy pt có 4 nghiệm \(S=\left\{\pm\sqrt{\frac{41+\sqrt{889}}{6}};\pm\sqrt{\frac{41-\sqrt{889}}{6}}\right\}\)
Sửa)):
a = -3 mà ghi lôn a = 3.giải tương tự như 3
cho phương trình (ẩn x) \(\dfrac{x+a}{a-x}\) - \(\dfrac{x-a}{a+x}\) = \(\dfrac{a\left(3a+1\right)}{a^2-x^2}\) tìm các giá trị của a sao cho phương trình nhận x=\(\dfrac{1}{2}\) làm nghiệm giúp mình với ạ
Đk:\(a\ne\pm x\)
Pt \(\Leftrightarrow\dfrac{\left(a+x\right)^2-\left(x-a\right)\left(a-x\right)}{\left(a-x\right)\left(a+x\right)}=\dfrac{a\left(3a+1\right)}{a^2-x^2}\)
\(\Leftrightarrow\dfrac{2\left(a^2+x^2\right)}{a^2-x^2}=\dfrac{a\left(3a+1\right)}{a^2-x^2}\)
\(\Leftrightarrow2a^2+2x^2=3a^2+a\)
\(\Leftrightarrow a^2+a-2x^2=0\) (1)
Thay \(x=\dfrac{1}{2}\) vào (1) ta được:
\(a^2+a-2\left(\dfrac{1}{2}\right)^2=0\)
\(\Leftrightarrow a^2+a-\dfrac{1}{2}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}a=\dfrac{-1+\sqrt{3}}{2}\\a=\dfrac{-1-\sqrt{3}}{2}\end{matrix}\right.\) (tm)
Vậy...
Cho phương trình ẩn x: x² - ( m + 1 ) x + 2m - 2 = 0 a) Chứng minh phương trình luôn có nghiệm với mọi m.
\(\Delta=\left(m+1\right)^2-4\left(2m-2\right)=m^2-6m+9=\left(m-3\right)^2\ge0\) ; \(\forall m\)
\(\Rightarrow\) Phương trình luôn có nghiệm với mọi m
a)Hãy định nghĩa phương trình bậc nhất một ẩn?Phương trình : 2x – 5 = 3 + 2x có phải là phương trình bậc nhất một ẩn không ?
b)Tìm các giá trị của m sao cho phương trình :12 – 2(1- x)2 = 4(x – m) – (x – 3 )(2x +5) có nghiệm x = 3.
c)Định nghĩa hai phương trình tương đương ? Cho ví dụ. Giải thích.
a: Phương trình có dạng ax+b=0 khi a<>0 được gọi là phương trình bậc nhất một ẩn
Phương trình 2x-5=2x+3 là phương trình bậc nhất một ẩn
c: Hai phương trình tương đương là hai phương trình có cùng tập nghiệm