Biết rằng tồn tại các số nguyên a, b sao cho hàm số y = a x + b x 2 + 1 đạt giá trị nhỏ nhất, giá trị lớn nhất đều là các số nguyên và tập giá trị của hàm số đã cho chỉ có đúng 6 số nguyên. Giá trị của a 2 + 2 b 2 bằng
A. 36
B. 34
C. 41
D. 25
a) cho a thuộc Z, chứng tỏ rằng a + |a| là số chẵn
b) chứng tỏ rằng không tồn tại các số nguyên x,y,z sao cho: | x - 2y| + |4y - 5z| + |x - 3x| = 2011
a) Xét :
\(a< 0\)\(\Rightarrow|a|=-a\)
\(\Rightarrow a+|a|=a+\left(-a\right)=0\)(là số chẵn)
\(a\ge0\)\(\Rightarrow|a|=a\)
\(\Rightarrow|a|+a=a+a=2a\)(luôn chẵn với mọi a nguyên)
Vậy ta có đpcm
b) Phần b) chỗ dấu giá trị tuyệt đối thứ 3 có phải là z-3x không ạ ?
Gỉa sử tồn tại các số nguyên x,y,z thỏa mãn đề bài .
Ta có : \(\left(x-2y\right)+\left(4y-5z\right)+\left(z-3x\right)=-2x+2y-4z\)(là một số chẵn)
Áp dụng cm ở phần a), ta có:
\(|x-2y|+\left(x-2y\right)+|4y-5z|+\left(4y-5z\right)+|z-3x|+\left(z-3x\right)\)là 1 số chẵn
\(\Rightarrow|x-2y|+|4y-5z|+|z-3x|\)là một số chẵn
Mà \(2011\)là số lẻ
\(\Rightarrow\)Mẫu thuẫn với giả thiết
\(\Rightarrow\)Điều giả sử là sai
\(\Rightarrowđpcm\)
Cho đa thức P(x) có tất cả các hệ số nguyên, hệ số bậc cao nhất là 1. Giả sử tồn tại các số nguyên a,b,c đôi một khác nhau sao cho P(a)=P(b)=P(c)=2, chứng minh rằng không tồn tại số nguyên d sao cho P(d)=3
cho đa thức P(x) tất cả hệ số đều nguyên, hệ số bậc cao nhất là 1, giả sử tồn tại các số nguyên a,b,c khác nhau sao cho P(a)=P(b)=P(c)=2. Chứng minh rằng không tồn tại số nguyên d sao cho P(d)=3
cho x,y là hai số nguyên liên tiếp sao cho tồn tại a,b để x-y=x2a-y2b. chứng minh rằng x-y là số chính phương
Cho a,b \(\in\) N* sao cho a + b là 1 số lẻ. Chia tập hợp các số nguyên dương thành 2 tập rời nhau. Chứng minh rằng luôn tồn tại 2 phần tử x,y cùng thuộc 1 tập sao cho x - y = { a ; b }
Cho P(x) là đa thức với hệ số nguyên. Chứng minh rằng không tồn tại các số nguyên phân biệt a, b, c sao cho P(a) = b, P(b) = c, P(c) = a. tks mina
I agree with 'lien hoang' 's opinion.He needs the solution,not the answer.
Mình đồng ý với liên hoàng.Bạn đó cần lời giải chứ không cần đáp số.Có phải toán trắc nghiệm đâu!
3.1. Đa thức với hệ số nguyên Đa thức với hệ số nguyên là đa thức có dạng P(x) = anx n + an-1x n-1 + …+ a1x + a0 với ai là các số nguyên. Ta ký hiệu tập hợp tất cả các đa thức với hệ số nguyên là Z[x]. Ta có các kết quả cơ bản sau đây về đa thức với hệ số nguyên. (1) Nếu P(x) có nghiệm nguyên x = a thì phân tích được P(x) = (x-a)Q(x) với Q(x) là đa thức với hệ số nguyên. (2) Nếu a, b nguyên và a b thì P(a) – P(b) chia hết cho a – b. (3) Nếu x = p/q là một nghiệm của P(x) (với (p, q) = 1) thì p là ước của a0 và q là ước của an. Đặc biệt nếu an = 1 thì nghiệm hữu tỷ là nghiệm nguyên. (4) Nếu x = m + n là nghiệm của P(x) với m, n nguyên, n không chính phương thì x’ = m - n cũng là nghiệm của P(x). (5) Nếu x = m + n với m, n nguyên, n không chính phương thì P(x) = M’ + N’ n với M’, N’ nguyên. Đa thức với hệ số nguyên sẽ nhận giá trị nguyên với mọi giá trị x nguyên. Điều ngược lại không đúng, có những đa thức nhận giá trị nguyên với mọi x nguyên nhưng các hệ số của nó không nguyên. Ví dụ. Các đa thức (x2 -x)/2, (x3 -x)/6 nhận giá trị nguyên với mọi x nguyên. Đa thức với hệ số hữu tỷ nhưng nhận giá trị nguyên với mọi x nguyên được gọi là đa thức nguyên. Một đa thức với hệ số hữu tỷ P(x) bất kỳ có thể biểu diễn dưới dạng Q(x) b a với a, b là các số nguyên và Q(x) là đa thức với hệ số nguyên. 3.2. Đa thức bất khả quy Định nghĩa. Cho P(x) là đa thức với hệ số nguyên. Ta gọi P(x) là bất khả quy trên Z[x] nếu P(x) không phân tích được thành tích hai đa thức thuộc Z[x] với bậc lớn hơn hay bằng 1. Tương tự định nghĩa đa thức bất khả quy trên Q[x]
Cho các hàm số y= f(x) =2x +a và y=g(x)=3x+b
Tìm a,b biết rằng đồ thị hàm số cắt nhau tại điểm M(1,3)
Cho các mệnh đề sau:
1. Nếu hàm số y = f x liên tục, có đạo hàm tới cấp hai trên a ; b , x 0 ∈ a ; b và f ' x 0 = 0 f ' ' x 0 ≠ 0 thì x0 là một điểm cực trị của hàm số.
2. Nếu hàm số y = f x xác định trên a ; b thì luôn tồn tại giá trị lớn nhất và giá trị nhỏ nhất trên đoạn đó.
3. Nếu hàm số y = f x liên tục trên a ; b thì hàm số có đạo hàm tại mọi x thuộc [a;b].
4. Nếu hàm số y = f x có đạo hàm trên a ; b thì hàm số có nguyên hàm trên a ; b
Số mệnh đề đúng là:
A. 2
B. 1
C. 3
D. 4
Đáp án A.
Mệnh đề 3 sai ví dụ hàm số y=|x| liên tục tại x = 0 nhưng không có đạo hàm tại điểm đó.
Mệnh đề 4 đúng vì nếu hàm số y=f(x) có đạo hàm trên [a;b] thì hàm số liên tục trên [a;b] do đó hàm số có nguyên hàm trên [a;b]
Cho hàm số y = f(x) xác định trên khoảng (a; +∞)
Chứng minh rằng nếu lim x → + ∞ f ( x ) = - ∞ thì luôn tồn tại ít nhất một số c thuộc (a; +∞) sao cho f(c) < 0