Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hà Anh
Xem chi tiết

a) Xét :

\(a< 0\) 

\(\Rightarrow|a|=-a\)

\(\Rightarrow a+|a|=a+\left(-a\right)=0\)(là số chẵn)

\(a\ge0\)

\(\Rightarrow|a|=a\)

\(\Rightarrow|a|+a=a+a=2a\)(luôn chẵn với mọi a nguyên)

Vậy ta có đpcm

b) Phần b) chỗ dấu giá trị tuyệt đối thứ 3 có phải là z-3x không ạ ?

Gỉa sử tồn tại các số nguyên x,y,z thỏa mãn đề bài .

Ta có : \(\left(x-2y\right)+\left(4y-5z\right)+\left(z-3x\right)=-2x+2y-4z\)(là một số chẵn)

Áp dụng cm ở phần a), ta có:

\(|x-2y|+\left(x-2y\right)+|4y-5z|+\left(4y-5z\right)+|z-3x|+\left(z-3x\right)\)là 1 số chẵn

\(\Rightarrow|x-2y|+|4y-5z|+|z-3x|\)là một số chẵn 

Mà \(2011\)là số lẻ

\(\Rightarrow\)Mẫu thuẫn với giả thiết 

\(\Rightarrow\)Điều giả sử là sai

\(\Rightarrowđpcm\)

Khách vãng lai đã xóa
Phạm Thị Huyền Trang
Xem chi tiết
hello lala
Xem chi tiết
lâm thảo nguyên
Xem chi tiết
Vương Hoàng Minh
Xem chi tiết
liên hoàng
Xem chi tiết
Phan Thanh Tịnh
17 tháng 9 2016 lúc 16:36

I agree with 'lien hoang' 's opinion.He needs the solution,not the answer.

Mình đồng ý với liên hoàng.Bạn đó cần lời giải chứ không cần đáp số.Có phải toán trắc nghiệm đâu!

Đức Nhật Huỳnh
18 tháng 9 2016 lúc 14:18

????????????????????????????????????

Đức Nhật Huỳnh
18 tháng 9 2016 lúc 14:22

3.1. Đa thức với hệ số nguyên Đa thức với hệ số nguyên là đa thức có dạng P(x) = anx n + an-1x n-1 + …+ a1x + a0 với ai là các số nguyên. Ta ký hiệu tập hợp tất cả các đa thức với hệ số nguyên là Z[x]. Ta có các kết quả cơ bản sau đây về đa thức với hệ số nguyên. (1) Nếu P(x) có nghiệm nguyên x = a thì phân tích được P(x) = (x-a)Q(x) với Q(x) là đa thức với hệ số nguyên. (2) Nếu a, b nguyên và a  b thì P(a) – P(b) chia hết cho a – b. (3) Nếu x = p/q là một nghiệm của P(x) (với (p, q) = 1) thì p là ước của a0 và q là ước của an. Đặc biệt nếu an =  1 thì nghiệm hữu tỷ là nghiệm nguyên. (4) Nếu x = m + n là nghiệm của P(x) với m, n nguyên, n không chính phương thì x’ = m - n cũng là nghiệm của P(x). (5) Nếu x = m + n với m, n nguyên, n không chính phương thì P(x) = M’ + N’ n với M’, N’ nguyên. Đa thức với hệ số nguyên sẽ nhận giá trị nguyên với mọi giá trị x nguyên. Điều ngược lại không đúng, có những đa thức nhận giá trị nguyên với mọi x nguyên nhưng các hệ số của nó không nguyên. Ví dụ. Các đa thức (x2 -x)/2, (x3 -x)/6 nhận giá trị nguyên với mọi x nguyên. Đa thức với hệ số hữu tỷ nhưng nhận giá trị nguyên với mọi x nguyên được gọi là đa thức nguyên. Một đa thức với hệ số hữu tỷ P(x) bất kỳ có thể biểu diễn dưới dạng Q(x) b a với a, b là các số nguyên và Q(x) là đa thức với hệ số nguyên. 3.2. Đa thức bất khả quy Định nghĩa. Cho P(x) là đa thức với hệ số nguyên. Ta gọi P(x) là bất khả quy trên Z[x] nếu P(x) không phân tích được thành tích hai đa thức thuộc Z[x] với bậc lớn hơn hay bằng 1. Tương tự định nghĩa đa thức bất khả quy trên Q[x] 

Hoàng Thiện Nhân
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
23 tháng 9 2017 lúc 8:49

Đáp án A.

Mệnh đề 3 sai ví dụ hàm số y=|x| liên tục tại x = 0 nhưng không có đạo hàm tại điểm đó.

 

Mệnh đề 4 đúng vì nếu hàm số y=f(x) có đạo hàm trên [a;b] thì hàm số liên tục trên [a;b] do đó hàm số có nguyên hàm trên [a;b]

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
16 tháng 12 2019 lúc 7:45