Cho a, b là hai số thực đồng thời thỏa mãn b – a – 2 = 0 và 3 a . 2 b = 3 - 2 Tính b – 5 a
A. 10
B. -2
C. 15
D. 8
Cho a, b là hai số thực đồng thời thỏa mãn b – a – 2 = 0 và 3 a . 2 b = 3 - 2 . Tính b - 5 a
Cho hai số thực a và b thỏa mãn a < b và ∫ a b x sin x d x = π đồng thời a cos a = 0 và b cos b = - π .Tính tích phân ∫ a b cos x d x .
A. I = - π .
B. I = π .
C. I = 145 12 .
D. I = 0.
Chọn D.
Đặt u = x d v = sin x d x ⇒ d u = d x v = - cos x
1. Cho các số thực không âm \(a;b;c\) (không có hai số nào đồng thời bằng 0) thỏa mãn \(a+b+c \leq 3\)
Tìm giá trị nhỏ nhất: \(A=\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\)
2. Cho các số thực \(a;b;c \in [0;1]\) thỏa mãn \(a+b+c=2\), tìm giá trị lớn nhất và nhỏ nhất của:
\(B=\dfrac{ab}{1+ab}+\dfrac{bc}{1+bc}+\dfrac{ca}{1+ca}\)
Thank you all :)
1.
Ta sẽ chứng minh BĐT sau: \(\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\ge\dfrac{10}{\left(a+b+c\right)^2}\)
Do vai trò a;b;c như nhau, ko mất tính tổng quát, giả sử \(c=min\left\{a;b;c\right\}\)
Đặt \(\left\{{}\begin{matrix}x=a+\dfrac{c}{2}\\y=b+\dfrac{c}{2}\end{matrix}\right.\) \(\Rightarrow x+y=a+b+c\)
Đồng thời \(b^2+c^2=\left(b+\dfrac{c}{2}\right)^2+\dfrac{c\left(3c-4b\right)}{4}\le\left(b+\dfrac{c}{2}\right)^2=y^2\)
Tương tự: \(a^2+c^2\le x^2\) ; \(a^2+b^2\le x^2+y^2\)
Do đó: \(A\ge\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\)
Nên ta chỉ cần chứng minh: \(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{10}{\left(x+y\right)^2}\)
Mà \(\dfrac{1}{\left(x+y\right)^2}\le\dfrac{1}{4xy}\) nên ta chỉ cần chứng minh:
\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{x^2+y^2}\ge\dfrac{5}{2xy}\)
\(\Leftrightarrow\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{2}{xy}+\dfrac{1}{x^2+y^2}-\dfrac{1}{2xy}\ge0\)
\(\Leftrightarrow\dfrac{\left(x-y\right)^2}{x^2y^2}-\dfrac{\left(x-y\right)^2}{2xy\left(x^2+y^2\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(x-y\right)^2\left(2x^2+2y^2-xy\right)}{2x^2y^2}\ge0\) (luôn đúng)
Vậy \(A\ge\dfrac{10}{\left(a+b+c\right)^2}\ge\dfrac{10}{3^2}=\dfrac{10}{9}\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(\dfrac{3}{2};\dfrac{3}{2};0\right)\) và các hoán vị của chúng
2.
Ta có: \(B=\dfrac{ab+1-1}{1+ab}+\dfrac{bc+1-1}{1+bc}+\dfrac{ca+1-1}{1+ca}\)
\(B=3-\left(\dfrac{1}{1+ab}+\dfrac{1}{1+ca}+\dfrac{1}{1+ab}\right)\)
Đặt \(C=\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ca}\)
Ta có: \(C\ge\dfrac{9}{3+ab+bc+ca}\ge\dfrac{9}{3+\dfrac{1}{3}\left(a+b+c\right)^2}=\dfrac{27}{13}\)
\(\Rightarrow B\le3-\dfrac{27}{13}=\dfrac{12}{13}\)
\(B_{max}=\dfrac{12}{13}\) khi \(a=b=c=\dfrac{2}{3}\)
Do \(a;b;c\in\left[0;1\right]\)
\(\Rightarrow\left(a-1\right)\left(b-1\right)\ge0\)\(\Leftrightarrow ab+1\ge a+b\)
\(\Leftrightarrow ab+c+1\ge a+b+c=2\)
\(\Rightarrow abc+ab+c+1\ge ab+c+1\ge2\)
\(\Rightarrow\left(c+1\right)\left(ab+1\right)\ge2\)
\(\Rightarrow\dfrac{1}{ab+1}\le\dfrac{c+1}{2}\)
Hoàn toàn tương tự, ta có:
\(\dfrac{1}{bc+1}\le\dfrac{a+1}{2}\) ; \(\dfrac{1}{ca+1}\le\dfrac{b+1}{2}\)
Cộng vế: \(C\le\dfrac{a+b+c+3}{2}=\dfrac{5}{2}\)
\(\Rightarrow B\ge3-\dfrac{5}{2}=\dfrac{1}{2}\)
\(B_{min}=\dfrac{1}{2}\) khi \(\left(a;b;c\right)=\left(0;1;1\right)\) và các hoán vị của chúng
Cho hai số thực a,b thỏa mãn đồng thời các đẳng thức 3 - a . 2 b = 1152 và log 5 a + b = 2 . Tính giá trị biểu thức P = a - b
A. -3
B. -9
C. 8
D. -6
Cho hai số thực a, b thỏa mãn đồng thời các đẳng thức 3 - 2 . 2 b = 1152 và log 5 a + b = 2 . Tính giá trị biểu thức P = a - b
A. -3
B. -9
C. 8
D. -6
Gọi a và b là hai số thực thỏa mãn đồng thời a + b = 1 và 4 - 2 a + 4 - 2 b = 0 , 5 . Khi đó tích ab bằng
A. 1 4
B. 1 2
C. - 1 2
D. - 1 4
Gọi a và b là hai số thực thỏa mãn đồng thời a + b = 1 và 4 - 2 a + 4 - 2 b = 0 , 5 . Khi đó tích ab bằng
Cho các số thực a, b đồng thời thỏa mãn 3 - a 2 b = 1152 và log 5 ( a + b ) = 2 . Tính giá trị biểu thức P = a - b.
Cho a và b là hai số thực phân biệt thỏa mãn \(a^4-4a=b^4-4b\). Chứng minh rằng 0<a+b<2
Lời giải:
$a^4-4a=b^4-4b$
$\Leftrightarrow (a^4-b^4)-(4a-4b)=0$
$\Leftrightarrow (a-b)(a+b)(a^2+b^2)-4(a-b)=0$
$\Leftrightarrow (a-b)[(a+b)(a^2+b^2)-4]=0$
$\Rightarrow (a+b)(a^2+b^2)-4=0$ (do $a-b\neq 0$ với mọi $a,b$ phân biệt)
$\Rightarrow (a+b)(a^2+b^2)=4>0$
Mà $a^2+b^2>0$ với mọi $a,b$ phân biệt nên $a+b>0$
Mặt khác:
Áp dụng BĐT AM-GM:
$4=(a+b)(a^2+b^2)\geq (a+b).\frac{(a+b)^2}{2}$
$\Rightarrow 8> (a+b)^3$
$\Rightarrow 2> a+b$
Vậy $0< a+b< 2$
Ta có đpcm.