Giải bất phương trình:
x 2 + 10 ≤ 2 x 2 + 1 x 2 - 8
A.
B.
C.
D.
Giải bất phương trình : x mũ 2 - 2 sqrt( x mũ 2 - 7x + 10) < 7x - 2
\(x^2-2\sqrt{x^2-7x+10}< 7x-2\)
\(ĐK:x\ge5\)
BPT \(\Leftrightarrow x^2-7x+2-2\sqrt{x^2-7x+10}< 0\)
\(\Leftrightarrow t^2-8-2t< 0\left(t=\sqrt{x^2-7x+10}\ge0\right)\)
\(\Leftrightarrow\left(t+2\right)\left(t-4\right)< 0\)
\(\Leftrightarrow-2< t< 4\Leftrightarrow-2< \sqrt{x^2-7x+10}< 4\)
\(\Leftrightarrow\sqrt{x^2-7x+10}< 4\Leftrightarrow x^2-7x-6< 0\)
\(\Leftrightarrow\orbr{\begin{cases}5\le x< \frac{7+\sqrt{73}}{2}\\\frac{7-\sqrt{73}}{2}< x\le2\end{cases}}\)
Chúc bạn học tốt !!!
Giải bất phương trình:
\(x+x\sqrt{10-x^2}+\sqrt{10-x^2}>7\)
Giải bất phương trình : x mũ 2 - 2 sqrt ( x mũ 2 - 7x + 10 ) < 7x - 2
\(x^2-2\sqrt{x^2-7x+10}< 7x-2\)
ĐKXĐ: \(x\ge5\)
Ta có BĐT \(\Leftrightarrow x^2-2\sqrt{x^2-7x+10}-7x+2< 0\)
\(\Leftrightarrow x^2-7x+10-2\sqrt{x^2-7x+10}+1-9< 0\)
\(\Leftrightarrow\left(\sqrt{x^2-7x+10}-1\right)^2-9< 0\)
\(\Leftrightarrow\left(\sqrt{x^2-7x+10}-4\right)\left(\sqrt{x^2-7x+10}-2\right)< 0\)
Vì \(\sqrt{x^2-7x+10}\ge0\Rightarrow\sqrt{x^2-7x+10}< 4\)
\(\Leftrightarrow x^2-7x+10< 16\)
\(\Leftrightarrow x^2-7x-6< 0\)
Chúc bạn học tốt !!!
\(x^2-2\sqrt{x^2-7x+10}< 7x-2\)
\(\Rightarrow x^2-7x+10-2\sqrt{x^2-7x+10}+1< 9\)
\(\Rightarrow\left(\sqrt{x^2-7x+10}-1\right)^2< 9\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x^2-7x+10}-1< 3\\\sqrt{x^2-7x+10}-1< -3\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}\sqrt{x^2-7x+10}< 4\\\sqrt{x^2-7x+10}< -2\left(L\right)\end{cases}}\)
\(\Rightarrow x^2-7x+10=16\)
\(\Rightarrow x^2-2x-5x+10=16\)
\(\Rightarrow\left(x-2\right)\left(x-5\right)=16\)
...........................
Bài I: 1) Giải các phương trình a/8 + 4x = 3x – 1
2) Giải các bất phương trình a) 10 - 5(x + 3) > 3(x - 1)
1) Ta có: \(4x+8=3x-1\)
\(\Leftrightarrow4x-3x=-1-8\)
\(\Leftrightarrow x=-9\)
2) Ta có: \(10-5\left(x+3\right)>3\left(x-1\right)\)
\(\Leftrightarrow10-5x-15-3x+3>0\)
\(\Leftrightarrow-8x>2\)
hay \(x< \dfrac{-1}{4}\)
1.Giải bất phương trình: 3* căn[1-(3/x)] + căn[3x-(27/x)] >= x
2. Tìm m để bất phương trình [(10-m)x^2-2(m+2)x+1]/[căn(x^2-2x+2] < 0 có nghiệm
Cảm ơn nhiều những ai giúp em ạ!
câu 1 giải các phương trình sau.
a) 4x+8=3x-15
b) \(\dfrac{x+2}{x-2}-\dfrac{1}{x}=\dfrac{2}{x\left(x-2\right)}\)
câu 2 giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số
a) 2x-8\(\ge\)0.
b)10+10x>0
câu 3 giải bài toán bằng các lập phương trình
Một học sinh đi từ nhà đến trường với vận tốc 15km/h,rồi từ trường về nhà với vận tốc 20km/h.Biết thời gian đi nhiều hơn thời gian về là 15 phút. Tĩnh quãng đường từ nhà đến trường của người đó.
câu 4 Cho hình chữ nhật ABCD có AB=8cm,BC=6cm.Kẻ đường cao AH của tam giác ADB(AH\(\perp\)DB,H\(\in\)DB).
a) Chúng minh \(\Delta\)HAD đồng dạng \(\Delta\)ABD.
b) Chứng minh:AD\(^2\)=DH.DB.
c)Tính độ dài các đoạn thẳng AH,DH.
d) Tính tỉ số diện tích \(\Delta\)HAD và \(\Delta\)ABD từ đó suy ra tỉ số đồng dạng của nó.
giúp mình với mai mình thi rồi SOS !!!!!!!
2:
a: =>x-4>=0
=>x>=4
b: =>x+1>0
=>x>-1
Giải bất phương trình sau: \(\dfrac{x^2-26}{10}\)+\(\dfrac{x^2-25}{11}\) \(\ge\) \(\dfrac{x^2-24}{12}\)+\(\dfrac{x^2-23}{13}\)
\(\dfrac{x^2-26}{10}+\dfrac{x^2-25}{11}\ge\dfrac{x^2-24}{12}+\dfrac{x^2-23}{13}\)
\(\Leftrightarrow\left(\dfrac{x^2-26}{10}-1\right)+\left(\dfrac{x^2-25}{11}-1\right)\ge\left(\dfrac{x^2-24}{12}-1\right)+\left(\dfrac{x^2-23}{13}-1\right)\)
\(\Leftrightarrow\dfrac{x^2-36}{10}+\dfrac{x^2-36}{11}\ge\dfrac{x^2-36}{12}+\dfrac{x^2-36}{13}\)
\(\Leftrightarrow\dfrac{x^2-36}{10}+\dfrac{x^2-36}{11}-\dfrac{x^2-36}{12}-\dfrac{x^2-36}{13}\ge0\)
\(\Leftrightarrow\left(x^2-36\right)\left(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}\right)\ge0\)
Vì \(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}>0\Rightarrow x^2-36\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-6\\x\ge6\end{matrix}\right.\)
Bất phương trình đó tương đương với:
\(\left(\dfrac{x^2-26}{10}-1\right)+\left(\dfrac{x^2-25}{11}-1\right)\ge\left(\dfrac{x^2-24}{12}-1\right)+\left(\dfrac{x^2-23}{13}-1\right)\)
⇔ \(\dfrac{x^2-36}{10}+\dfrac{x^2-36}{11}\ge\dfrac{x^2-36}{12}+\dfrac{x^2-36}{13}\)
⇔ \(\dfrac{x^2-36}{10}+\dfrac{x^2-36}{11}-\dfrac{x^2-36}{12}-\dfrac{x^2-36}{13}\ge0\)
⇔ \(\left(x^2-36\right)\left(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}\right)\ge0\)
+)Vì \(\dfrac{1}{10}>\dfrac{1}{11}>\dfrac{1}{12}>\dfrac{1}{13}\) nên \(\dfrac{1}{10}+\dfrac{1}{11}-\dfrac{1}{12}-\dfrac{1}{13}>0\)
⇔ \(x^2-36\ge0\)
⇔ \(x^2\ge36\)
⇔ \(\sqrt{x^2}\ge6\)
⇔ \(\left|x\right|\ge6\)
⇔ \(\left[{}\begin{matrix}x\ge6\\x\le-6\end{matrix}\right.\)
➤ Vậy \(\left[{}\begin{matrix}x\ge6\\x\le-6\end{matrix}\right.\)
Bài 2 (1,0 điểm). Giải phương trình và bất phương trình sau: a) |5x| = - 3x + 2 b) 6x – 2 < 5x + 3 Bài 3 (1,0 điểm.) Giải bất phương trình b) x – 3 x – 4 x –5 x – 6 ——— + ——– + ——– +——–
`|5x| = - 3x + 2`
Nếu `5x>=0<=> x>=0` thì phương trình trên trở thành :
`5x =-3x+2`
`<=> 5x +3x=2`
`<=> 8x=2`
`<=> x= 2/8=1/4` ( thỏa mãn )
Nếu `5x<0<=>x<0` thì phương trình trên trở thành :
`-5x = -3x+2`
`<=>-5x+3x=2`
`<=> 2x=2`
`<=>x=1` ( không thỏa mãn )
Vậy pt đã cho có nghiệm `x=1/4`
__
`6x-2<5x+3`
`<=> 6x-5x<3+2`
`<=>x<5`
Vậy bpt đã cho có tập nghiệm `x<5`
cho hàm số \(f\left(x\right)=x^3-3x^2+2\)
a, giải bất phương trình \(f'\left(x\right)\le0\)
b, giải phương trình \(f'=\left(x^2-3x+2\right)=0\)
c, đặt \(g\left(x\right)=f\left(1-2x\right)+x^2-x+2022\) giải bất phương trình\(g'\left(x\right)\ge0\)
\(a,f'\left(x\right)=3x^2-6x\\ f'\left(x\right)\le0\Leftrightarrow3x^2-6x\le0\\ \Leftrightarrow3x\left(x-2\right)\le0\Leftrightarrow0\le x\le2\)
Lời giải:
a. $f'(x)\leq 0$
$\Leftrightarrow 3x^2-6x\leq 0$
$\Leftrightarrow x(x-2)\leq 0$
$\Leftrightarrow 0\leq x\leq 2$
b.
$f'(x)=x^2-3x+2=0$
$\Leftrightarrow 3x^2-6x=x^2-3x+2=0$
$\Leftrightarrow 3x(x-2)=(x-1)(x-2)=0$
$\Leftrightarrow x-2=0$
$\Leftrightarrow x=2$
c.
$g(x)=f(1-2x)+x^2-x+2022$
$g'(x)=(1-2x)'f(1-2x)'_{1-2x}+2x-1$
$=-2[3(1-2x)^2-6(1-2x)]+2x-1$
$=-24x^2+2x+5$
$g'(x)\geq 0$
$\Leftrightarrow -24x^2+2x+5\geq 0$
$\Leftrightarrow (5-12x)(2x-1)\geq 0$
$\Leftrightarrow \frac{-5}{12}\leq x\leq \frac{1}{2}$
giải các bất phương trình sau
a)2x-1+5.(3-x)>0 b)2x-2/5 +3/10 +x-2/4
a)
\(2x-1+5\left(3-x\right)>0\\ 2x-2+15-5x>0\\ -3x+13>0\\ x< \dfrac{13}{3}.\)